

Water Quality Improvement Activities in the Klamath Basin

> NCRWQCB October 9, 2014 Yreka, CA

Clayton Creager & Invited Speakers

Presentation / Panel Outline

- Introduce Panel & Presentation Topics
- Topics / Projects Not Addressed
- General Stewardship Overview
- Panel Speaker Presentations
- Board Questions / Comments
- Concluding Comments
- Public Comment

Water Quality Update Panel

- Andy Baker NCRWQCB
- Sarah Beesley Yurok Tribal Fisheries Program
- Sara Borok CDF&W
- Jared Bottcher Klamath Basin Rangeland Trust
- Amy Campbell The Nature Conservancy
- Rick Carlson US Bureau of Reclamation
- Katharine Carter NCRWQCB
- Ric Costales County of Siskiyou
- Lyra Cressey Salmon River Restoration Council
- Adriane Garayalde Shasta Valley RCD

- Mike Hiatt OR Department of Environmental Quality
- Amy Hoss The Nature Conservancy
- Nell Kolden Klamath Basin Rangeland Trust
- Greg Laurie USFS Klamath National Forest
- Bryan McFadin NCRWQCB
- Tom Menne Scott Valley Groundwater Advisory Committee
- Sari Sommarstrom Scott River Water Trust
- Gus Tolley University of CA Davis
- Craig Tucker The Karuk Tribe
- Randy Turner Klamath Basin 3 Monitoring Program

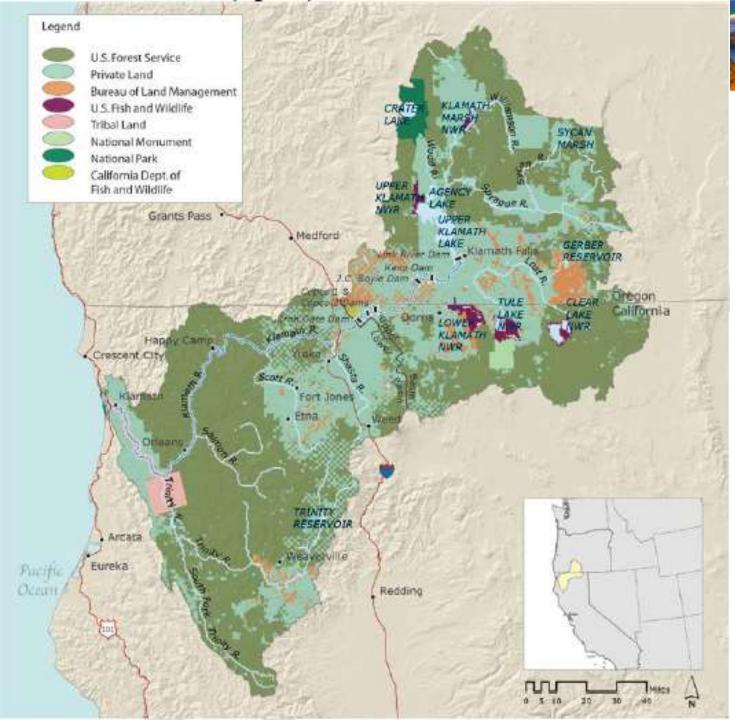
Presentation Topics

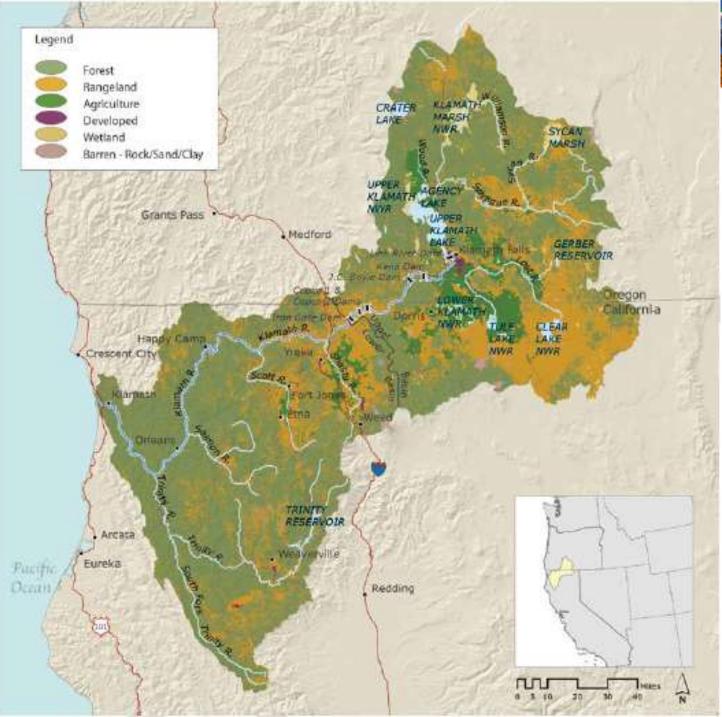
- I. Klamath Overview
- II. Klamath Fish Health Assessment Team
- III. Klamath River Flow Augmentation Update
- IV. Yurok Tribe Environmental Restoration Projects
- V. Salmon River Habitat Restoration
- VI. USFS Restoration Projects: Seiad and Sugar Creeks

- VI. Scott & Shasta TMDL Waivers Update
- VII. Shasta Watershed Stewardship Pilot Project
- VIII.Flow Augmentation in Shasta & Scott Rivers
- IX. Scott Valley Groundwater
- X. Upper Klamath Basin Diffuse Source Treatment Wetlands
- XI. Bureau of Reclamation Water Quality 4 Improvement Activities

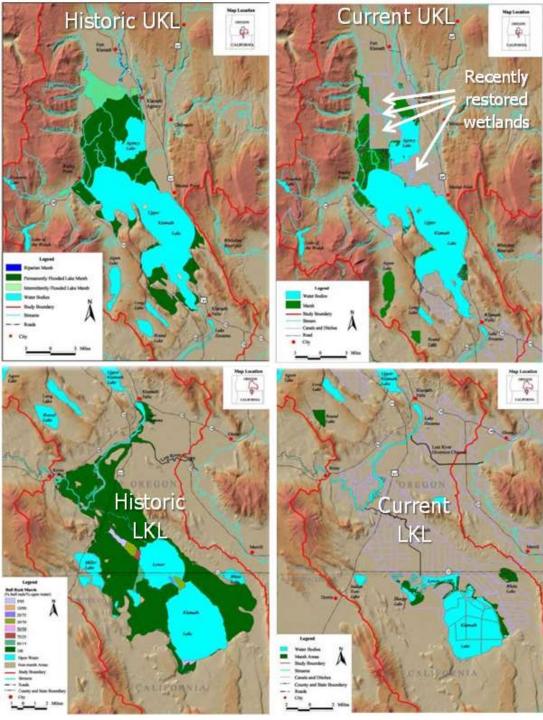
Acknowledge That Many Stewardship Activities Could Not Be Included

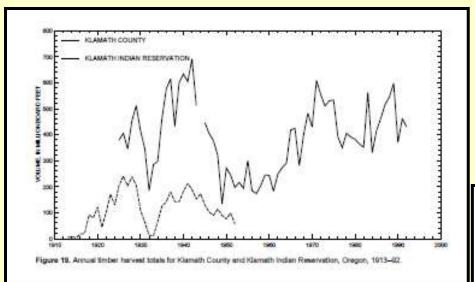
- Trinity River Restoration Program
- Hoopa Valley Tribe Water Quality Program
- US Forest Service Waiver & Management Activities


- Mid-Klamath
 - Watershed Council
- USFWS Restoration Projects
- Klamath Tribes Environmental Dreament
 - Program Many Others!!!!



Klamath TMDL Strategy


- Comprehensive Basin
 Strategy
- Partnerships through Sub-basin Watershed Stewardship Groups
- Collaborate with KHSA / KBRA to address impacts of dams



Klamath Water Quality Improvement Strategy

- Mitigate loss of wetlands
- Reduce mobilization of nutrients from Upper
 Klamath Lake
 sediments
- Work with agriculture and forestry through stewardship program

Legacy effects of large-scale land use disturbance activities

Era when logging not as well managed as it is today.

Upper Klamath Lake Basin Nutrient-Loading Study— Assessment of Historic Flows in the Williamson and Sprague Rivers

USGS 1998 Risley & Laenen

Acreage of irrigated agriculture increased following WWII and Korean War when Homestead Act lands were granted to returning veterans

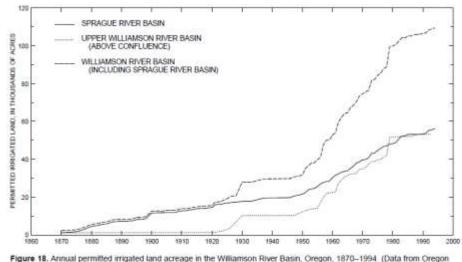
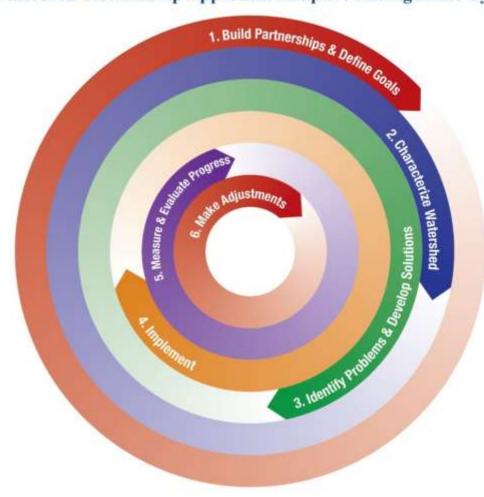
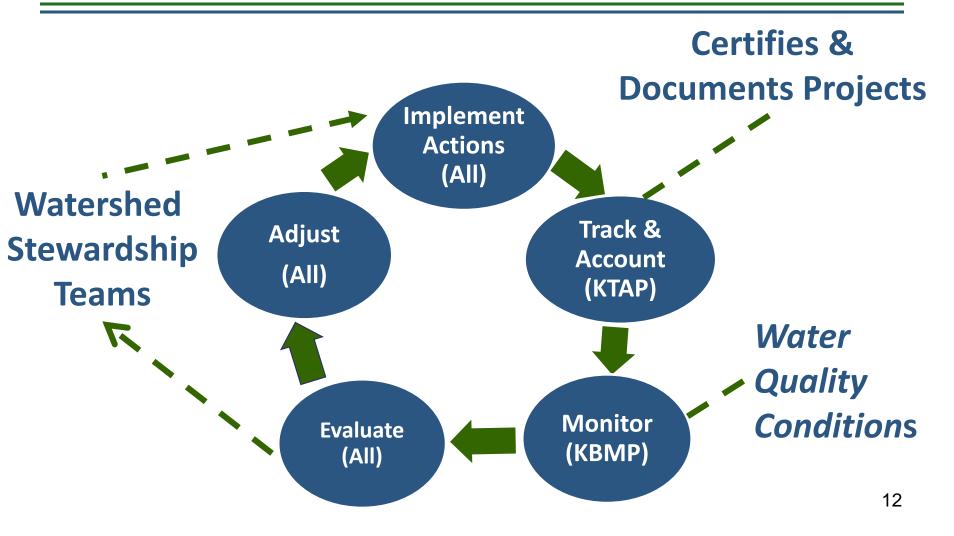
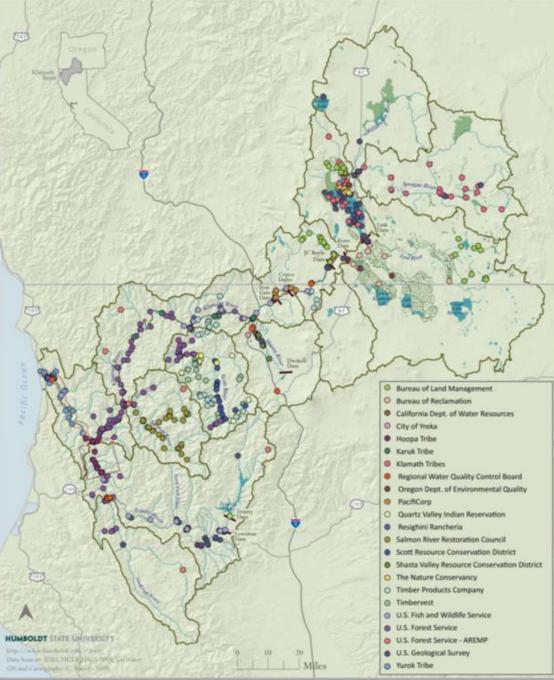



Figure 18. Annual permitted irrigated land acreage in the Williamson River Basin, Oregon, 1870–1994. (Data from Oregon Water Resources Department, Water Rights Information System, URL http://www.wrd.state.or.us/waterrights/index.html)

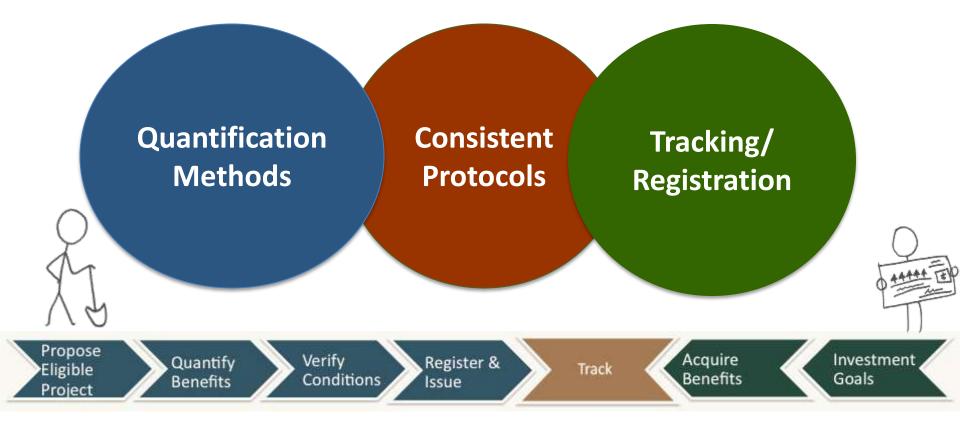

Watershed Stewardship Framework


Watershed Stewardship Approach: Adaptive Management Cycle

An approach that supports collaborative outcomes

Adaptive Management Framework

Klamath Basin Monitoring Program


- Monitoring coordination
- Common analytical methods and sampling protocols
- Data management
- Membership organization
- Watershed stewardship assessment reports
- Web Information Portal (Blue-green Algae Tracker)
 - www.kbmp.net

Klamath Basin Water Quality Monitoring Plan: 2009 Monitoring Locations by Organization

Klamath Tracking & Accounting Program (KTAP)

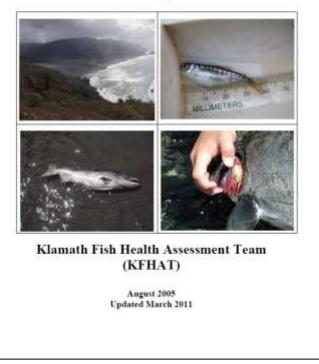
KTAP - Program Components

October 2014

Klamath Tracking and Accounting Program

Klamath Fish Health Assessment Team 2014 Update

Sara Borok & Katharine Carter


Item 6 - October 9, 2014 - Yreka, CA

Overview

How does KFHAT do it?

Fish Kill Response Plan

Klamath River Basin Fish Kill Response Plan

Training Manual

Klamath River Basin Training Manual

Klamath Fish Health Assessment Team (KFHAT)

May 2012

Overview

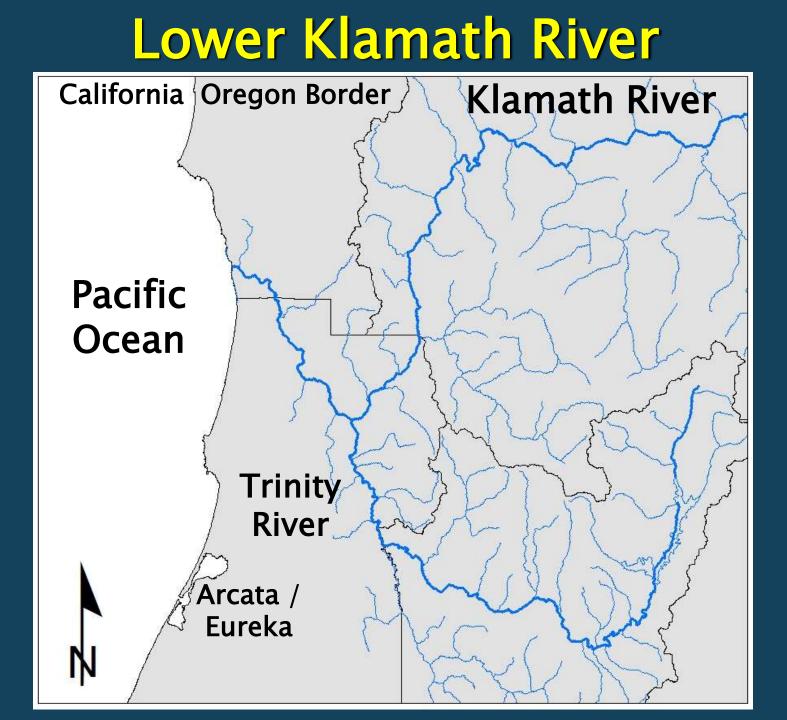
KFHAT Website: http://www.kbmp.net/collaboration/kfhat

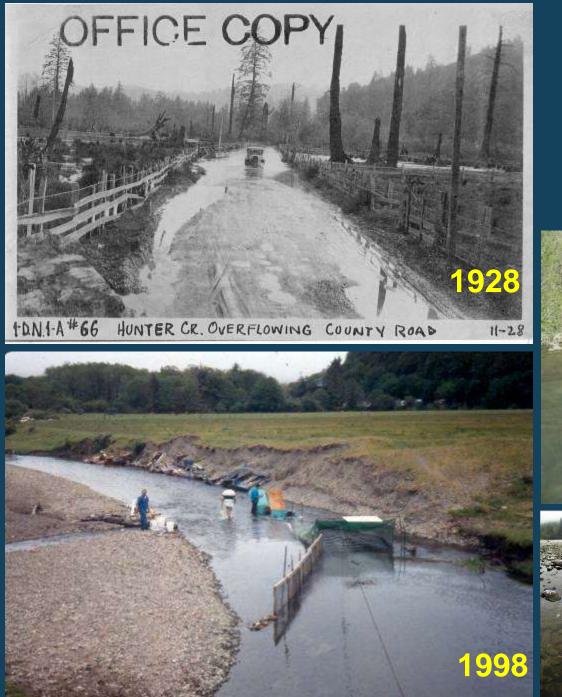
Klamath Basin Monitoring Program	
Home About Us Maps & M	Ionitoring Data Meetings & Documents Stewardship Collaboration News Contact Us
UKCAN KHSA Monitoring F	Clamath Blue-green Algae Workgroup Klamath TAP Klamath Fish Health
Klamath Basin Monitoring Program	 Klamath Fish Health Assessment Team Mainstem Klamath below Iron Gate Reservoir- Current Readiness Level: Orange -Critically dry water year, presence of ich parasite in salmonids A kill is likely to occur and management levels in agencies need to be alerted. Frequent data sharing among KFHAT and resource managers is vital. If possible, KFHAT will provide recommendations for resource management actions to management with basis for recommendations.
Blue-Green Algae Map	Chasta, Spott, Salman, and Trinity Rivers, Current Readinges Level: Valley
	Shasta, Scott, Salmon, and Trinity Rivers- Current Readiness Level: Yellow
the second secon	 Low flows and critically dry water year Conditions, such as unfavorable physical or chemical conditions, observation of increased incidence of pathogens, or increased fish morbidity and/or mortality suggest the need for heightened awareness. Frequent data sharing among KFHAT and resource managers becomes important. The Response Plan procedures should be reviewed and responders should be ready to take action if the situation worsens.

Overview

KFHAT Data & Information Sharing

- Hydrologic conditions
- Fishery data and information
- Disease monitoring
- Water quality data
- Blue-green algae


Data and information collected by KFHAT members are utilized to determine the likelihood of a fish kill and inform resource managers who make resource allocation decisions


Yurok Fisheries & Water Quality Restoration in the Lower Klamath

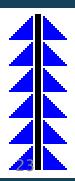
Sarah Beesley – Yurok Tribal Fisheries Program

Historic Logging, Wetland Conversion Stream Clearing & Hydroelectric Operations

Yurok Tribe Environmental Program Water Division Community & Pollution

Ecosystem Division

Pollution Prevention Division



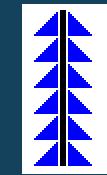
Yurok Tribe Watershed Restoration Program Slope Trinity River Stabilization Restoration Program

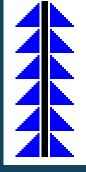
Yurok Tribal Fisheries Program Instream & Riparian Habitat Enhancement

Lower Klamath YTFP Division **Essential Program Partners Rocco Fiori ∞ Karuk Tribe Yurok Tribe Watershed Restoration Program Green Diamond Resource Company** Larry Lestelle ∞ USFWS ∞ USBOR

Riparian Restoration

Instream – Building Back Complexity





Constructed Wood Jams – Hunter Creek Bar Apex Jam 1 Bar Apex Jam 2 Side Channel

Bar Apex Jam 4 As-Built 2012

Early November 2012

Late November 2012

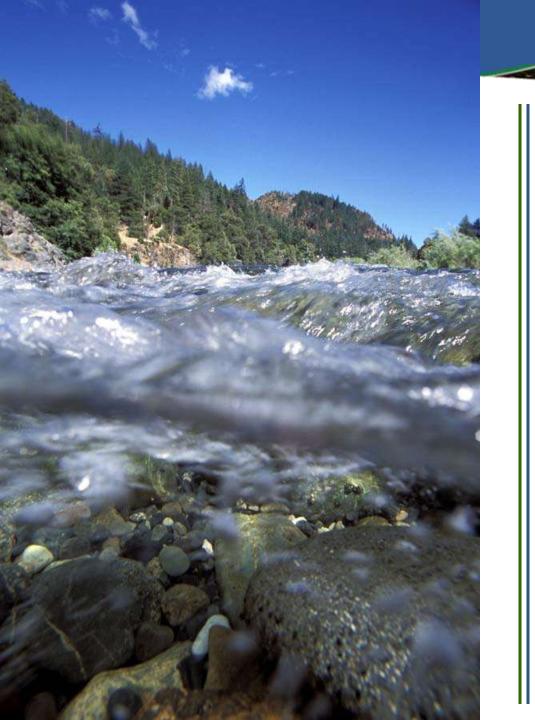
March 2013

February 2014

Off-Channel Habitat Construction

McGarvey Alcove I

Before Construction


Winter 2013

Hunter Creek Alcove I

Thank You

Salmon River Habitat Restoration

Salmon River Restoration Council

Lyra Cressey Associate Director

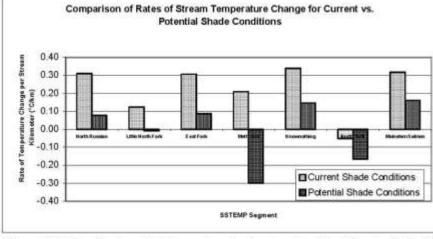
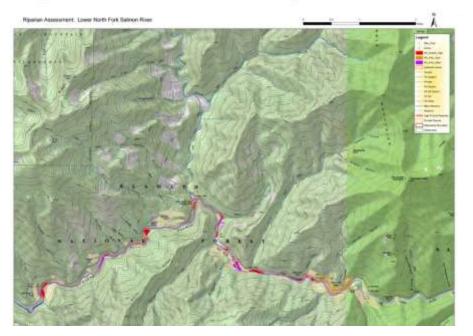
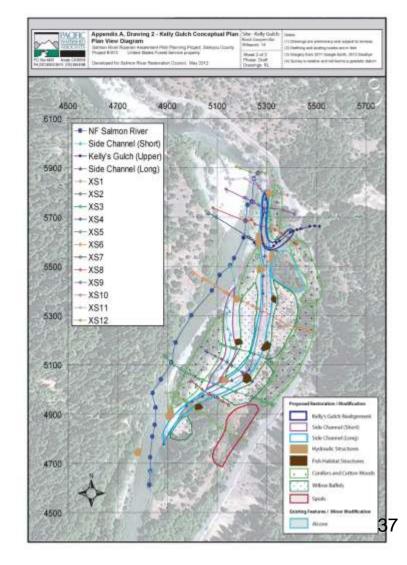
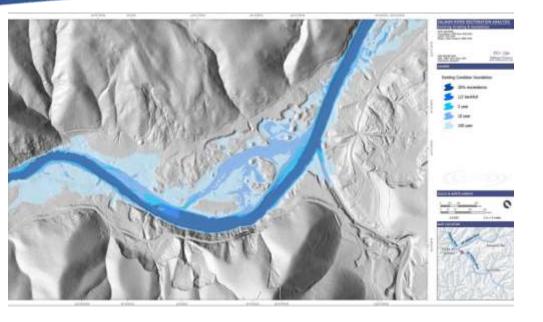
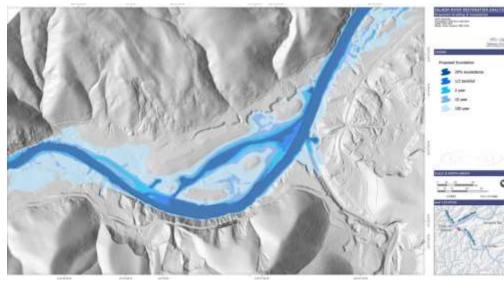



Figure B-9 Results show that increasing riparian trees to adjusted potential heights can produce a reduction in the rate of stream heating of 0.12°C/km to 0.51°C/km

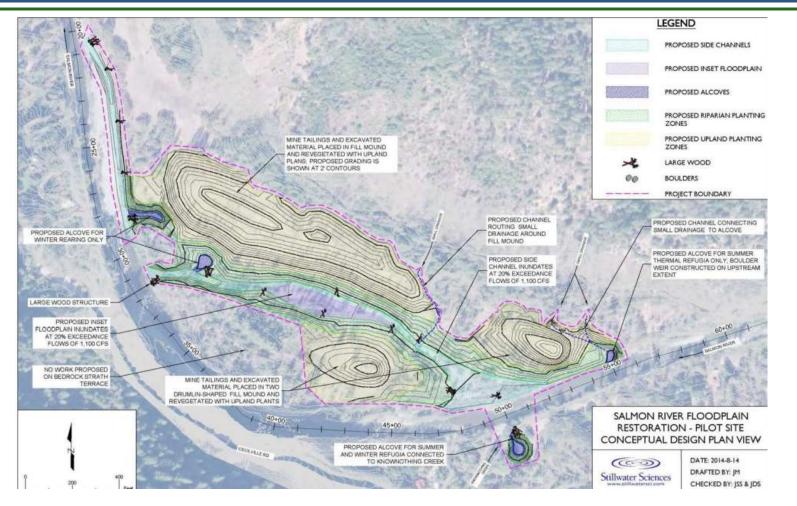



Riparian Assessment 2006-2008


- SRRC completed a detailed assessment of riparian vegetation and shading potential for the entire Salmon River corridor
- Sites were prioritized based on a number of different factors, including vegetation deficiency, aspect, access, and fish habitat potential.

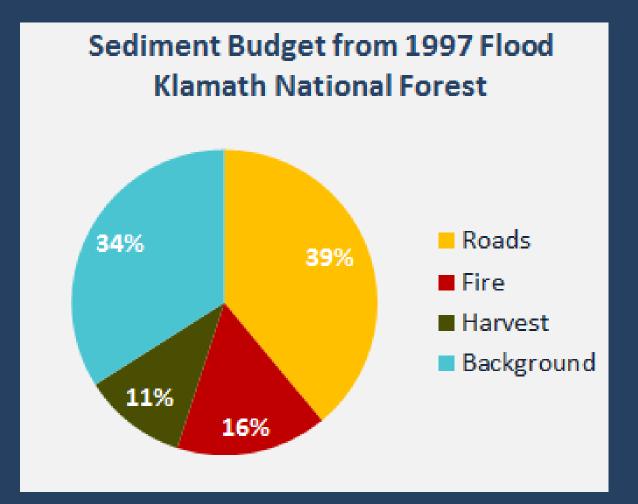
Riparian and Fish Habitat Restoration

Kelly Gulch Off-Channel Fisheries and Riparian Habitat Design **Existing Conditions Sketch** USGS 7.5" Quad: Sawyers Bar Legend and state (State) Party Barry 1 inch = 250 feet Salmon River Restoration Council Applicant: N Quad name: Sawyers Bar Feet Stream name: North Fork Salmon River 130 260 520



Floodplain Assessment 2013-2015

- Legacy mine tailings from extensive gold mining continue to degrade habitat within the floodplain and riparian corridor by preventing floodplain inundation and riparian plant succession.
- SRRC is currently assessing potential opportunities for restoring floodplain areas and associated mine tailing piles.

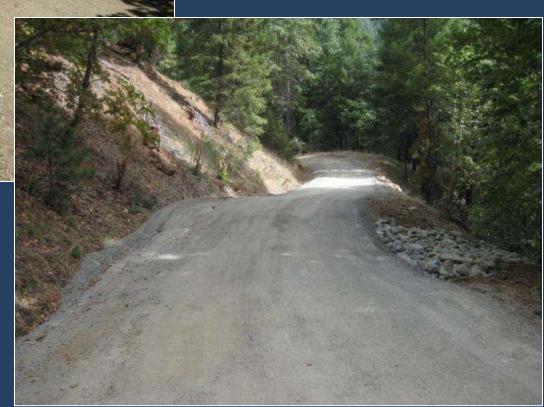

Floodplain Restoration

Klamath National Forest Watershed Restoration Program

North Coast Regional Water Quality Control Board Meeting Yreka, CA October 9, 2014

Forest Roads

Stream Crossing Failures



Typical Road Stormproofing



Before: Diversion potential at culvert

After: Dip with armored outlet and surface aggregate



Stream Crossing Upgrade

- Increase pipe size
- Constructed a dip
- Rock fill

Stream Crossing Upgrade

Before

After

Fire Restoration

Road Work Completed Since the 1997 Flood

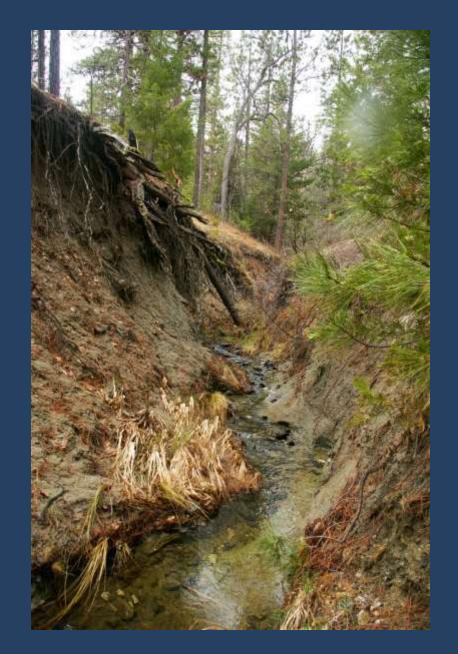
Road upgrading (stormproofing): Road Decommissioning: Fish Passage Projects: Road Inventory:

248 miles
59 miles
27 structures
4,000+ miles

Watershed Condition Framework (WCF)

National Forest Service process for restoring riparian and aquatic ecosystems

- A. Classify Watershed Condition
- **B.** Prioritize watersheds
- **C.** Develop Watershed Restoration Action Plans
 - Conduct field assessment to document specific problems
 - Identify 'essential projects' that address specific problems
 - Identify potential partners and funding sources
 - Develop implementation schedule & monitoring plan
- **D.** Implement Restoration Projects
- E. Monitor and Track Accomplishments


Klamath National Forest Priority Watersheds

Projects	Seiad Creek	Sugar Creek
Road Upgrade	20.7 miles	24.9 miles
Road Decommissioning	3.9 miles	7.9 miles
Meadow Restoration	-	5 acres
Mine Waste Removal	-	15 acres
Fish Passage Barrier	-	1 crossing
Noxious Weed Removal	10 acres	10 acres
Dredge Tailings (BLM & private)	_	2.5 miles
Fuels Treatment	3,600 acres	5,000 acres

Meadow Restoration

Mine Restoration

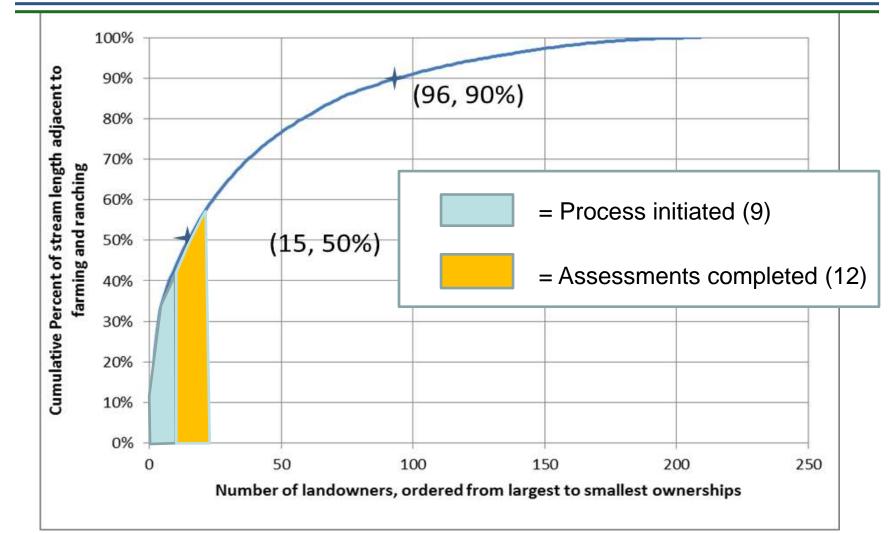
Dredge Tailings

Next Steps

- Complete work in the Seiad and Sugar Creek restoration plans
- Select the next priority watersheds
- Develop watershed restoration plans for the next priority watersheds
- Incorporate TMDL requirements into Forest Service restoration plans.

Scott River TMDL Conditional Waiver Update

October 9, 2014 Yreka, CA Bryan McFadin - NCRWQCB


Scott River TMDL Conditional Waiver Update

- Scott TMDL was adopted in September 2006
- Current Conditional Waiver adopted October 2012
- Focus is on land management activities adjacent to streams
- Property-by-property assessment approach
- Assessments prioritized by length of ag lands adjacent to streams

Water Quality Assessment Status

- Water quality assessments completed on 12 ownerships
- Assessment process initiated in 9 additional ownerships

Scott River Conditional Waiver Implementation Progress

Scott TMDL Grants and Contracts

319(h) grants:

- Scott River riparian restoration
- Groundwater Study Plan implementation

Prop. 84 grant:

Moffett Creek exclusionary fencing project

Contracts:

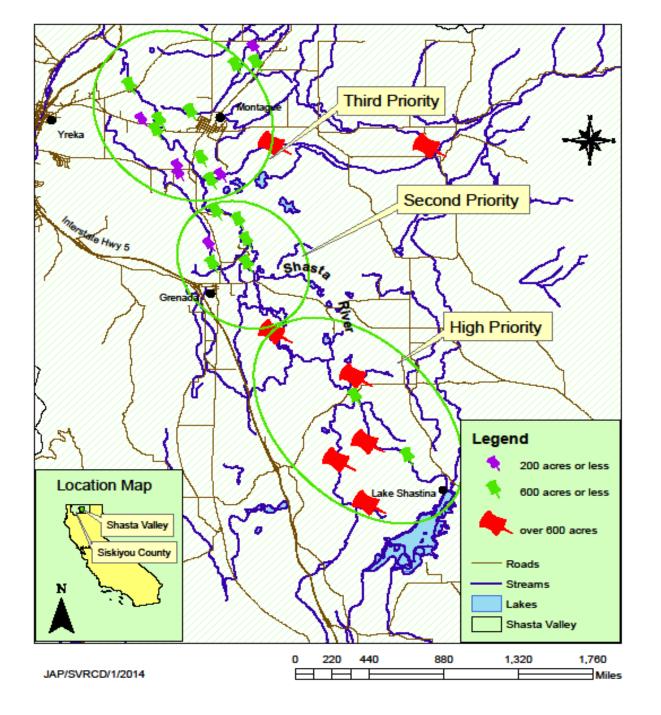
- Streamflow data collection
- Groundwater study plan
- Groundwater data collection and outreach
- Ranch Plan assistance

Next Steps

- Continue property-by-property water quality assessments
- Continue Ranch Plan development
- Continue working with timber companies on development and submittal of erosion control plans

Shasta River TMDL Conditional Waiver Update

October 9, 2014 Yreka, CA Andy Baker - NCRWQCB


61

Overview of Shasta TMDL Conditional Waiver

- The Shasta TMDL was adopted in January 2007
- Shasta River TMDL Conditional Waiver renewed by RWB October 2012
- Focus first on high priority area downstream of Dwinnell Dam, including Parks Creek, Big Springs Creek and tributary cold water springs
- Support development of additional water quality ranch plans
- Develop project tracking program (KTAP)

Water Quality Ranch Planning

- Important tool for landowners to protect water quality
- 34 ranch plans completed (some landowners already have ranch plans)
- 24 water quality ranch plans developed by SVRCD for TMDL purposes
- Continue to develop additional water quality ranch plans and work with landowners

Water Quality Ranch **Plans** Completed in **Priority Areas**

TMDL Waiver Highest Priority Area

- Staff has worked with all eight landowners within high priority area
- Landowners are participating in working group to improve fish habitat and reconnect cold water springs in high priority area
- Much work has been completed including scientific studies, monitoring, and restoration projects
- New 319 grants and TMDL contracts may provide additional assessment, analysis, and project implementation

TMDL Grants and Contracts

- Phase I: Three completed grants for tailwater reduction and minor impoundment removal (2006-2007)
- Phase II: Tailwater Reduction (2009)
- Riparian Protection and Restoration (2011)
- Assessment and Planning Analysis in High Priority Area (2013)
- Phase III: Irrigation Water Management and Watershed Stewardship Project (2013)
- Annual small contracts to SVRCD (2006 2013 for coordinating work supportive of the TMDL)
- Staff currently writing new TMDL contract for TNC

Shasta River Watershed Stewardship: Pilot Project Update

October 9, 2014 Yreka, CA

Adriane Garayalde Shasta Valley Resource Conservation District

Shasta River Watershed Stewardship: Pilot Project Update

- 1) Draft Assessment of Water Temperature Data Completed
- 2) KTAP Inventory of Stewardship Projects Ongoing
- 3) Draft Monitoring Plan Completed
- 4) RCD Board Review

- 5) Partnership Review of Draft Report –
- 6) Final Report Preparation
- 7) Posting at KBMP Website – March 2015

Flow Augmentation in Shasta & Scott Rivers

- Efforts to Increase Flows in the Shasta River: Amy Campbell & Amy Hoss, The Nature Conservancy
- Efforts to Increase Flows in the Scott River: Sari Sommarstrom, Scott River Water Trust

Shasta River Water Transaction Program-

Improving Instream Flow Conditions in the Shasta River for Coho and Chinook Salmon

> October 2014, presented by Amy Campbell

California Water Code Section 1707

"Any person entitled to the use of water, whether based upon an appropriative, riparian, or other right, may petition the board for a change for purposes of preserving or enhancing wetlands habitat, fish and wildlife resources, or recreation in, or on, the water."

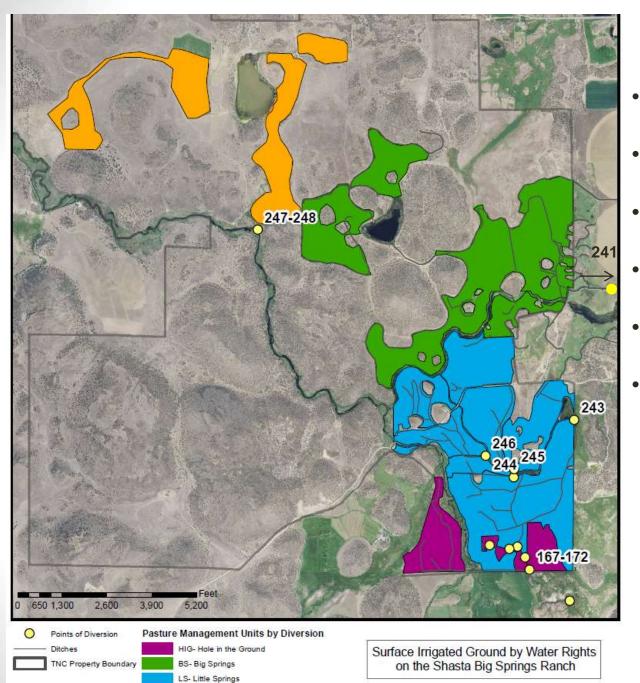
1707: ONE TOOL IN THE TOOLBOX

1707 (Instream Flow Dedication) is one of the

Water Protection Tools

But it isn't the only one, and it is NOT a

Water Restoration Tool



Water **Protection** Tools

- 1707 dedications
- Forbearance agreements
- Short or long term
 transfers
- Source substitution
- Water use efficiency (maybe)

Water Restoration Tools

- Riparian shading
- Channel restoration
- Maintain groundwater /surface
 water connectivity and integrity
- Streambank stabilization

SR- Shasta River

- Total Area—5,834 acres
- Irrigated Area—1,147 acres
- 18.11 cubic feet/second
- Approx. 650 cow/calf pair
- April Nov grazing only
- Two grazing leases

The View From Above: What Are We Trying to Do With this Water?

GOAL: IMPROVE IN-STREAM CONDITIONS (temperature and dissolved oxygen)

maximize anadromous fish production

quality, location, and timing of water is key

coho rearing in Big Springs Complex (April-September)

Fall Chinook adult migration in canyon (August and September) The View From Above: What Are We Trying to Do With this Water?

GOAL: IMPROVE IN-STREAM CONDITIONS (temperature and dissolved oxygen)

ADDITIONALLY.....

- If possible, keep lands in agriculture permissive, not restrictive dedication
- ✓Introduce the 1707 tool in the Shasta River
- ✓ Test the 1707 dedication process for TNC
- ✓Help inform/change/revise the process
 ✓Understand what it takes to know if it is feasible/economic for other landowners

Where Do We Start? Due Diligence: Not All Water is Created Equal

"Sure, we can spend all day nitpicking specifics but aren't sweeping generalities so much more satisfying?"

✓WATER RIGHT VALIDITY ✓WATER RIGHT PRIORITY ✓WATER RIGHT LANDSCAPE ✓WATER RIGHT QUANTITY ✓ ECOLOGICAL GOALS ✓LOCATION AND TIMING ✓WATER RIGHT QUALITY

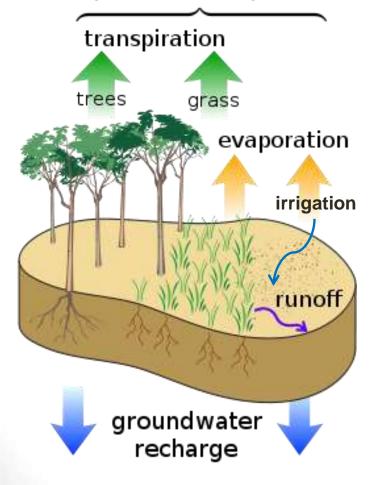
Local and reach-scale summary of results for water management alternatives that focus on instream dedications of TNC water rights in the Shasta River Watershed.

Body of Water	Quantity	Local effect*	Reach-scale effect
Hole in the Ground Creek	1.5 cfs	Yes** (↑)	No
Big Springs Creek	~6.7 cfs***	Yes (↓)	No
Little Springs Creek	7.9 cfs	Yes (↓)	Yes
BSC+LSC	14.6 cfs	Yes (↓)	Yes
Shasta River	2.3 cfs	No (-)	No

* Local effect can result in cooler (\downarrow), warmer (\uparrow), and no change (-) in downstream water temperatures.

** Examined empirically

*** Diversion shared with Busk Ranch. SBSR takes 10 cfs for 7 days of a 10-day rotation.


1707 Due Diligence: Water Quantity—Consumptive Use

to protect against the "no injury rule"

- While the entire water right can be dedicated to instream resources only the <u>consumptively used water</u> can be transferred downstream for beneficial use of instream resources.
- <u>*Consumptive Use:*</u> That part of water withdrawn that is evaporated, transpired by plants, consumed by crops or animals, or otherwise removed from the immediate water environment.

Consumptive Use

evapotranspiration = transpiration + evaporation

Consumed Water of TNC owned water rights in the Shasta River Watershed.

TNC Water Rights Total = 18 cfs

Calculation of Consumed Water (CFS)										
Apr	Мау	Jun	Jul	Aug	Sep					
.67	4.9	6.72	8.02	6.95	4.85					
4%	27%	37%	44%	38%	27%					

Bring it home.... How do §1707 relate to the Shasta TMDL?

Draft Shasta TMDL Implementation Plan states: Within five years ... water diverters shall provide a final report ... documenting <u>dedicated</u> cold water instream flow in the Shasta River in relation to the **45 cfs goal** or **alternative flow regime** that achieves the same temperature reductions from May 15 to October 15.

Months	April	May	June	July	Aug	Sept
estimated % consumptive use of applied water	4%	27%	37%	44%	38%	27%
~ Quantity of water secured via §1707 in order to achieve 45 cfs in the lower Shasta River Canyon	1125 cfs	167 cfs	121cfs	102 cfs	118 cfs	167 cfs
Estimated water diversion volumes per month						

Summary: Solely relying on §1707 to achieve this goal is not realistic. Need to be more specific on what flows are needed, where and during what times of the year.

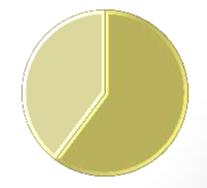
<u>When</u> do we need the water?

<u>Where</u> do we need the water?

How much water do we need?

<u>What quality</u> of water are we looking for?

<u>Is</u> there water potentially available?



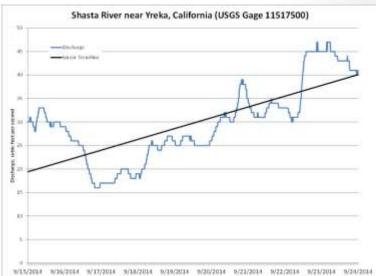
Shasta Water Transaction C Program

Instream Flows Coordinated by the Shasta River Water Transaction Program

Short-term Lease Voluntary Volume of Water (Acre-feet)

Water Transaction Species Targeted

□ Fall Flows- Chinook □ Spring Flows- coho and Chinook


nature.org

Shasta Valley Community-wide Fall Flow Program, 2009-2014

2014 Water Contributions:

- <u>When?</u> September 15-Oct 1
- <u>Where?</u> Shasta River Canyon (RM0-7)
- How much? Minimum of 70 cfs
- <u>What are we trying to achieve</u>? Volume
- <u>Results:</u>
 - 63 cfs (cubic feet per second) added combination of forbearance agrmts and voluntary contributions

By Devid Smith. #S202DevidSmith	Post Page
September 25. 2014 BatSAM	
Shasta River Chinook numbers spike	
Volwy groups and applicational community work to ensure autiliard flows.	
Chinesek submert are still parenting into Sinkipus County rivers, and one group is working to -meaner that adrepasts water is available for the finit to spaces in the Shorta River. Coldiomic Forgentizent of Policia and Wildlick relates action on the Sharta River reveal that as of Sept. 2.4, 2.4 or adult tail run Chinesek submer had returned to space. Last pror, by the same date, only uRB had been counted. On Begue Creek, CRIW data show that 65 Chinesek had returned as of Sept. 2.1, nearly four times as many as were summed last year by the same date. The Sharta Valley Resource Conservation District started in a recent press release that sumerous individuals have come happed by the group. According to the press. And preserved groundwater training to the Sharta River have enough water this year – an annual effor facilitated by the group. According to the release, members of the agricultural community – through an incretion-based water exchange- contributed sufface water and preserved groundwater trainover, informing to the Sharta River have enough water the first rise. These file sended all the water we could get them this year. "Its Nature Comerstand Project Associate Are Campbell said in the release. TSC parmees with the SNRCD to administer its water exchange program. "We know the randers have had a singly year with the drought and as have the field. It is great to be reachers will they areal, operating during the dry, halvy rare, "Campbel added. The release show had a stored the recent discovery of salman in the lower related River influented with the paratite ide, whit MR is the Klamath in zone.	a sacifier, to get these fish the water h was a major factor is a large scale fish

Our Partners: Shasta Valley Ag Community Shasta Valley RCD CDFW NOAA Scott/Shasta Watermaster District NFWF BOR

Priorities and actions driven by science.

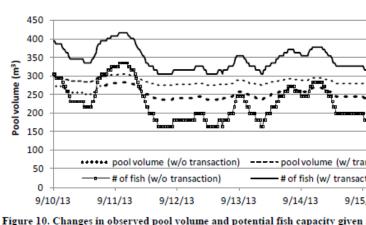
- Sustainable and long-term funding to support gages;
- Capacity to support monitoring of transactions;
- Mechanism to quickly adapt and adjust plans accordingly.

2	Table 8. Monthly	Evapoti	ranspiration	of Applied '	Water for	Actual Irrigate	ed Areas As	ssociated with	Water I	Rights (1
. 1							1				-

		Water Mar				Apr			May			Jun			Jul			Ang			Sep			Г
	Adjudicated Area, Acres ²		Min	Avg	Max	Min	Avg	Mex	Min	Avg	Mex	Min	Avg	Man	Min	Avg	Max	Min	Avg	Mar	Min	Asg	Mas	,
167-172	67.2	1.5		1		0.00	0.06	0.25	0.15	0.48	0.68	0.42	0.64	0.76	0.62	0.76	0.07	0.40	0.66	0.76	0.24	0.46	0.56	Γ
167-172	67.2	1.5				0.00	0.05	0.23	0.10	0.79	0.58	0.33	0.54	0.65	0.52	0.65	0.75	0.32	0.56	0.6				
167-172	67.2	1.5				0.00	0.05	0.21	0.04	0.31	0.45	0.24	0.44	0.54	0.41	0.54	0.62	0.24	0.47	0.5				
241	303.2	67				0.00	0.31	1.15	0.57	2.18	3.06	1.91	2.57	3.42	2,78	3.44	3.94	1.79	2.95	3.4				
241	305.2	6.7				0.00	0.27	1.05	0.53	1.90	2.61	1.49	2.43	2.92	2,32	2.94	3.37	1.44	2.54	2.9				
541	103.2	67				0.00	0.78	0.96	0.71	1.43	7 14	1.07	2.00	2.43	1 57	2.53	2.83	1.00	2 2 2 1	3.2				

Date: 08/06/2013

Monitoring of pulse flows contributed to the Shasta River- April 2013 Prepared by: Amy Campbell, Chris Babcock, Ada Fowler


Introduction

In April 2013, The Nature Conservancy (TNC) partnered with the Montague Water Conservation District (MWCD) ("District") to release approximately 100 ac-ft of stored water from Dwinnell Reservoir. The purpose of this release was to assist with outmigrating juvenile salmonids past low flow and potential natural fish barriers in the Upper Shasta River. Specific salmonids targeted for this release include coho, Fall Chinook and steelhead. This release of stored water was coordinated with the California

Department of Fish and Wildlife (CDFW), National Oceanic Atmospheric (NOAA)

Memorandum

Instream flows: new tools to quantify water quality conditions for returning adult Chinook salmon (in submission)

Ann D. Willis,¹ Amy M. Campbell,² Ada C. Fowler,³ Christopher A. Babcock,⁴ Jeanette K. Howard,² Michael L. Dess (P.E., M. ASCE),⁶ Andrew L. Nichols⁷

Key words: Instream flow, fish management, migration, aquatic habitats, water quality, dissolved oxygen

ABSTRACT

0.34 0

0 26 0

This paper examines the effect of implementing a water transaction program to address potential water quality limitations for returning adult fall-run Chinook salmon in a stream system where the agriculture is the dominant land and water use. Water transactions are becoming an increasingly used approach to provide instream flows during periods when there are competing water uses. Water transactions are offen used to achieve ecological objectives, but their water quality or biological effects are rarely quantified. The effects of a water transaction implemented in the Shasta River were evaluated using a spreadsheet model to quantify changes in dissolved oxygen conditions as they relate to discharge, pool volumes, holding habitat capacity, and potential dissolved oxygen demand by holding fish. The results indicate that water transactions may mitigate potential water quality impairments by decreasing the residence time in holding habitat, and are particularly effective during periods when flows are low, holding habitats are near carrying capacity, and dissolved oxygen demand by fish is elevated.

INTRODUCTION

Other ways to get more water instream?

- ✓ Continue to streamline the 1707 petition process
- ✓ Invest in flow monitoring and science to drive priorities
- ✓ Invest in the community of water rights owners
- ✓ Programmatic 1707s in areas with similar water rights
- ✓ Continue to encourage and fund water markets
- ✓ Urgent, but patience....paradigm shift needed

SHASTA BIG SPRINGS RANCH **OPEN HOUSE**

Friday & Saturday, October 17 & 18, 2014

THE NATURE CONSERVANCY

Invites you to join us for our annual Open House at spectacular Shasta Big Springs Ranch

FRIDAY, OCTOBER 17, 2014

10 am-4 pm Streamside presentations at 11 am, 1 pm, and 3 pm

SATURDAY, OCTOBER 18, 2014

10 am-4 pm Streamside presentations at 11 am, 1 pm, and 3 pm

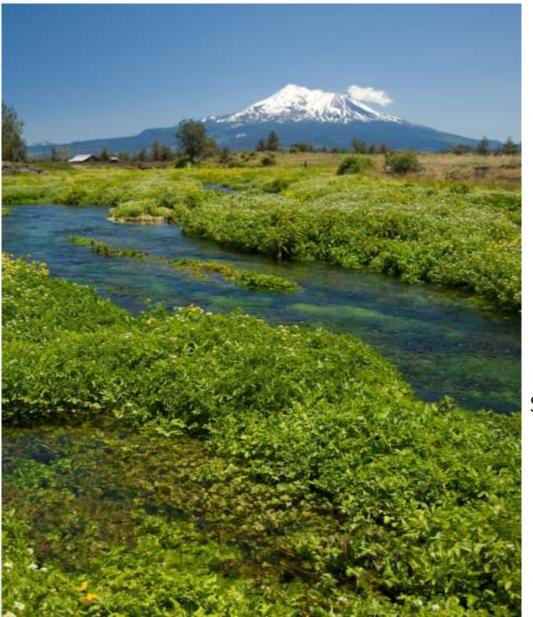
SHASTA BIG SPRINGS RANCH

North of Mt. Shasta and Weed. 4 miles east of I-5 on Louie Road Parking near Louie Road Bridge over the Shasta River

Join us to watch this year's spectacular run of fall Chinook in the Shasta River. See female salmon guard and build nests, while males compete with each other for spawning opportunities. Experts will be on hand to answer questions and point you to the best spots to catch all the action. It's the perfect outing for families, photographers, and all wildlife enthusiasts.

If you are bringing a group of 10 or more or if you are brining school kids on Friday during school hours, RSVP to Ally Sherlock: (530) 436-5056 + allysherlock@gmail.com

HOSTED BY:



(530) 436-5056 allysherlock@gmail.com

87

Acknowledgments/Partners

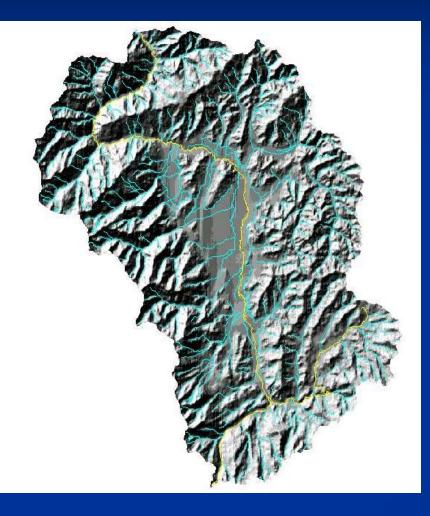
American Rivers Aquaterra California DFW California Trout **Conservation Farms and Ranches Davids Engineering** Farm Bureau **NOAA** Restoration Center North Coast RWB NFWF NRCS **River Right** SWRCB Scott River Water Trust Shasta and Scott River Watermaster District Shasta Valley Ag Community Shasta Valley RCD Siskiyou County **Trout Unlimited UCD** Watershed Center US Fish and Wildlife Service Watercourse Engineering

For more Information

Amy Campbell Shasta River Water Transaction Program Coordinator

(530) 926-3281 acampbell@tnc.org Amy Hoss Shasta River Project Director

(530) 926-3199 ahoss@tnc.org

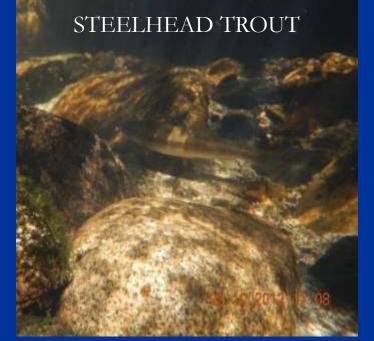

Board Questions & Comments

2014 Scott River Story: So Far

By Sari Sommarstrom & Preston Harris Scott River Water Trust

Scott River Watershed 814 square miles

Elev. 1,600 to 8,500 ft.
58 river miles mainstem
Alluvial valley 33,000 ac.
Groundwater basin
Snow-melt fed runoff
Rain shadow effect
Semi-arid – 21" rain ave.


Scott Valley Fish

COHO SALMON

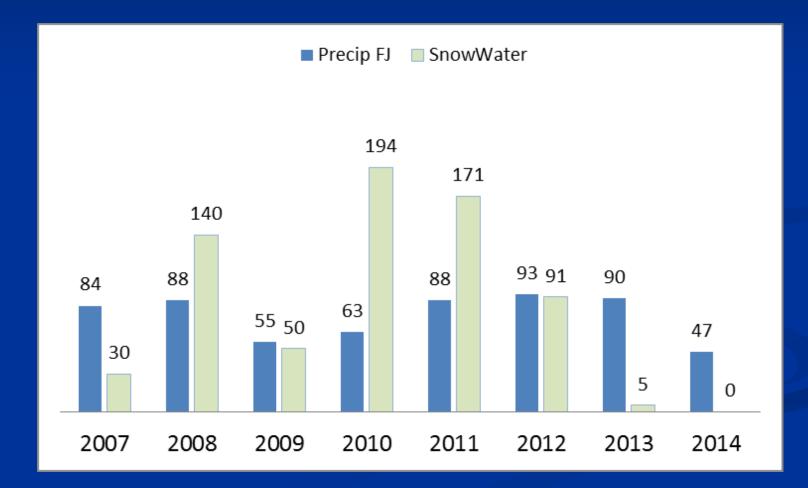
Countesy of Gal, Dept. of Fish & Game

CHINOOK SALMON

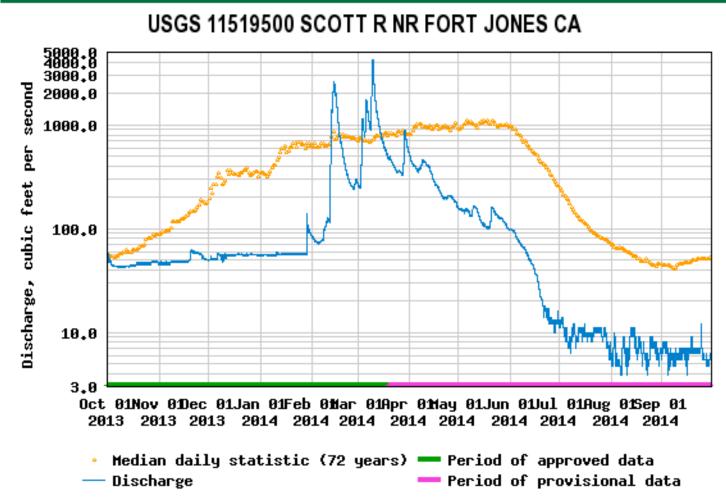
Scott River Watershed Restoration Checklist

Fish Screens = 100% \blacktriangleright Livestock fencing =80% Stockwater systems=60% ► Water Conservation = ++ ► Water Rights Decrees =100% \blacktriangleright Watermaster Service =~10% \blacktriangleright Water Leasing = ++ Instream rights = 7 Beaver population = +

Scott Valley Family Farming & Ranching: Water Needs



Irrigation for Alfalfa, Pasture, Grain crops 32,000 acres ~ April to September ~


Stockwater for Cattle and Horses ~ Year-round ~

Scott Watershed Rain & Snow: % of Average, 2007-2014 (May 1)

2014 Water Year – Extremely Dry

Scott River Water Trust: A Win-Win for Fish & Ag

We reimburse active water users for leaving water instream:

- to benefit salmon and steelhead
- during their critical life stages
- in priority reaches of the Scott River and its tributaries
- while protecting family farms.

First water trust in California!

WHO is the Water Trust? ~ Program since 2007~

NONPROFIT 501(c)(3)

- Water Trust Staff:
 Preston Harris
 - **Executive Director**
- Monitoring
 - Contractor Peter Thamer
 - Partner Siskiyou RCD

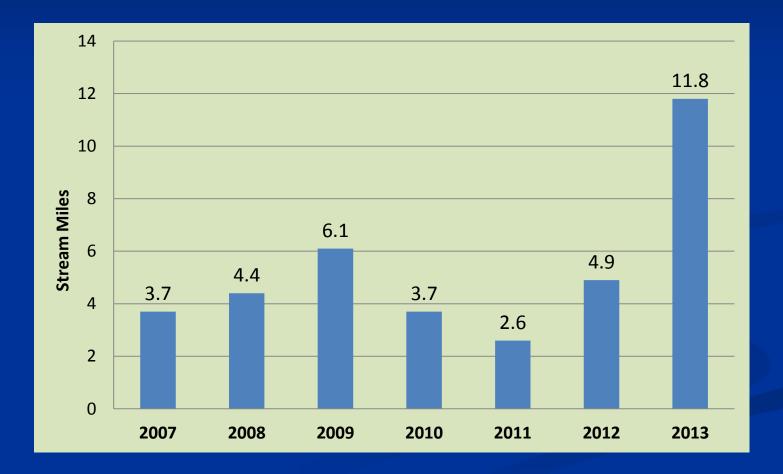
- Board Members: 5
 - Brad Erickson
 - Dave Krell
 - Sari Sommarstrom
 - Peter Yolles
 - vacancy
- Advisory Committee: 7
 - Local ranchers
 - Siskiyou RCD
 - Watershed Council
 - UC Cooperative Extension
 - Calif. Dept. Fish & Wildlife
 - NOAA-Fisheries (NMFS)

Water Leases: **Forbearance Agreements** Informal contract of ~4 pages between Trust & Water Rights holder Specifies: ■ Water right ■ Leased flow amount, Dates of lease: Begin & End Location of diversion & instream benefit, Price per acre-foot, plus any Bonus payment Total estimated volume Estimated total cost

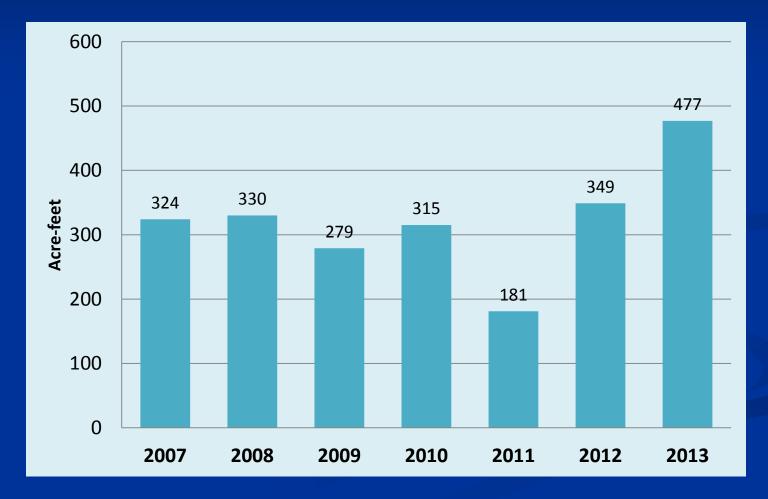
Pricing Matrix – 2014 Very Dry Water Year

	Water Year Type									
# Adjacent Lessors	Very Dry	Dry	Normal	Above Normal /Wet						
1	\$ 65	\$ 60	\$ 55	\$ 50						
2	\$ 70	\$ 65	\$ 60	\$ 55						
3	\$ 75	\$ 70	\$ 65	\$ 60						
4	\$ 80	\$ 75	\$ 70	\$ 65						
5	\$ 85	\$ 80	\$ 75	\$ 70						
6	\$ 9 0	\$ 85	\$ 80	\$ 75						

EXTREME YEAR BONUS: \$1,000 to commit to starting by July 1st


Summer Habitat Priorities

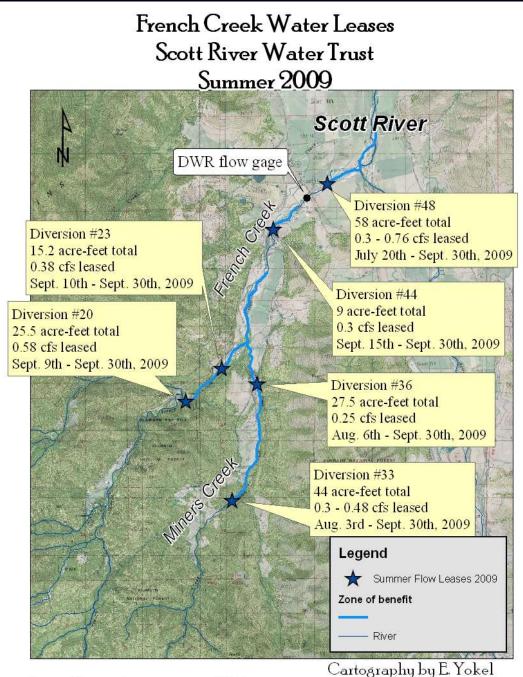
Juvenile Coho Salmon & Steelhead:


- <u>Where</u>: Tribs French, Shackleford, Patterson, Sugar
- When: Early July Oct 1st
 - depends upon water
 year type
- How Much: 0.2 5.0 cfs more in specific stream reaches

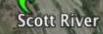
Summer Leases 2007-2013: Habitat Benefitted - miles

Fish-eye's view of lower French Creek below beaver dam

Summer Leases 2007-2013: Water Volume – acre-feet added


Summer Leases 2014: **Preliminary Results** French Creek – 7 leases Sugar Ck – 1 lease Scott River – 2 leases 0.2 to 2.0 cfs per lease ~800 acre-feet of volume ~15 miles of habitat benefit 20-106 days in length 5 began by July 1st

French Ck & Trib: 7 leases in 2014 adding flow to 6.6 miles of habitat


Siskiyou RCD - March 2010

0 0.5 1 2 Miles

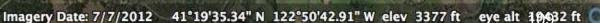
No new map yet: 2014 Lease Sites were at similar locations as in 2009 (also Critically Dry) Sugar Creek 2014 Lease: 3.3 miles for Coho rearing

Mouth of Sugar Cr

Dredger tailings

Google earth

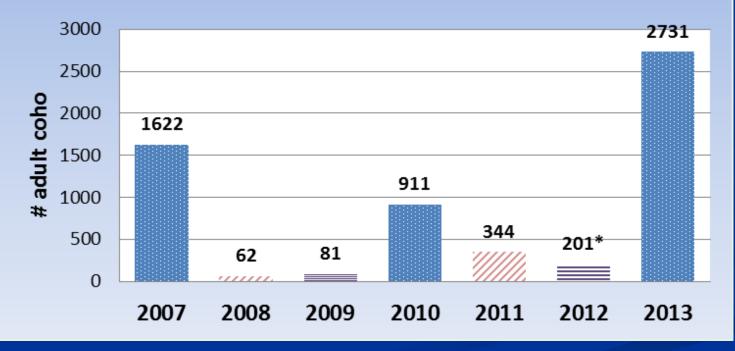
Point of diversion

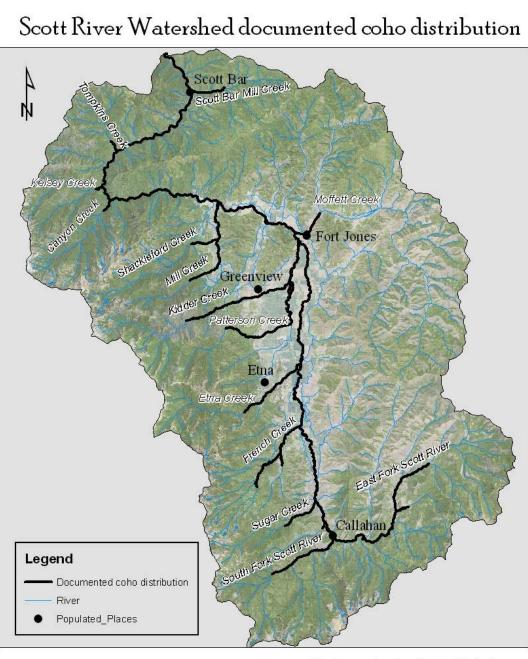

DWR Gauge Blue line indicates zone of benefit = 3.3 miles

DWR Gauge

1994

Sugar Greek



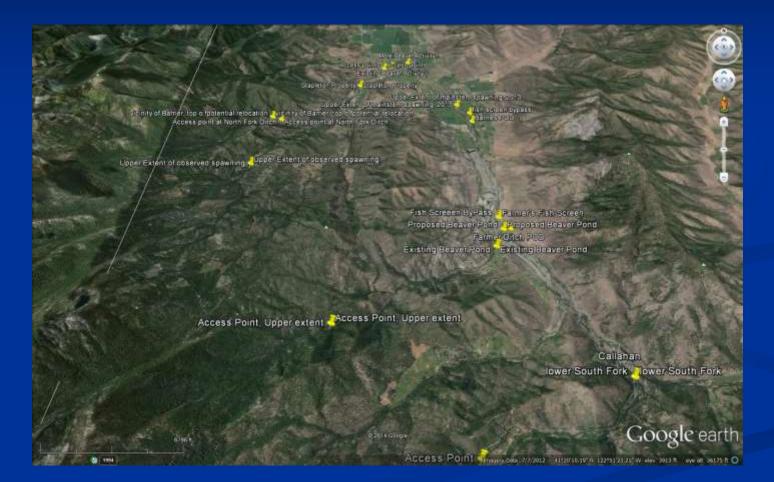

N

Coho Returns to Scott River 3 Brood Years are growing

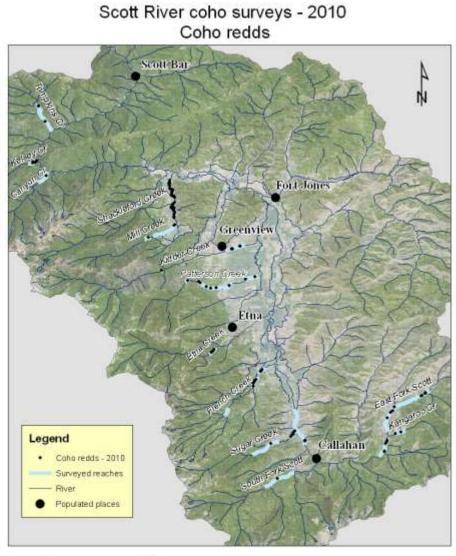
Scott River COHO Salmon Spawners: 3 Brood Years, 2007-2013

CDFW data from Scott River video weir @ RM 18; * incomplete data

0		2.5		5				10 Miles	
	1	62	1	- Ř.	- T	17	1	E	


Cartography by Erich Yokel Siskiyou RCD - April 22,2010

Scott River mainstem primarily <u>migratory</u> corridor for coho spawners and smolts. Tributaries are main coho spawning and rearing areas, but EXTREME low flows in 2014 Fall & Winter blocked spawner access. EMERGENCY


Coho male spawner, Dec. 2001, East Fork Scott¹¹¹

2014 Coho Emergency: Collaborative Juvenile Coho Rescue & Relocation

Siskiyou RCD initial strategy map by Danielle Yokel

2010 Coho Redd Sites: Destination

0 25 5 10 Miles

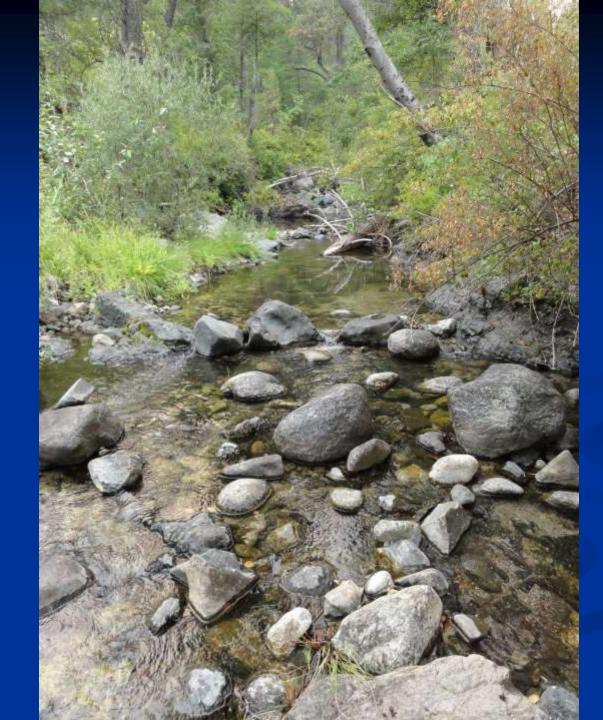
Cartography by Erich Yokel - Siskiyou RCD February, 2011

Rescue Site Seining & Sorting

All photos courtesy of CDFW

Sites located with ~10 miles of Scott River below Tailings.

Moved June 3 thru August 19th


Moving 116,000 coho to new homes

Iron Gate Hatchery received 4,447 coho as back-up

TO: South Fork, East Fork (Grouse Ck), Sugar Ck, French Ck & tribs, Etna Ck, Canyon Ck, Kelsey Ck

SUGAR CREEK Relocation site 8/19/14

Photo by Water Trust

PIT Tagging & Tracking

1,827 juvenile coho tagged: 20% released at rescue site 80% released at relocation sites

One of several PIT tag arrays in Scott River and several tribs

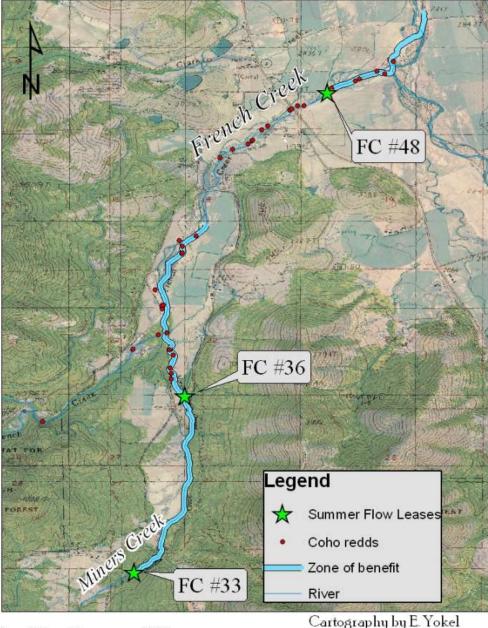
1st Water Lease in Spring: Helping migrating 0+ and 1+ coho

Photo by Peter Thamer

Farmers Ditch Diversion

Finances Dilease Revolutioning site (5) Sections Flow Monitoring site (e.e.)

> Farmers Ditch - Flow Monitoring Site (A) Mouth of Sugar Creek Farmers Ditch POD


> > Scott R - Flow Monitoring Site (C-1)

20 cfs added through upper Scott River Tailings Reach – RM 52-55 Lease Dates: April 30 to June 6

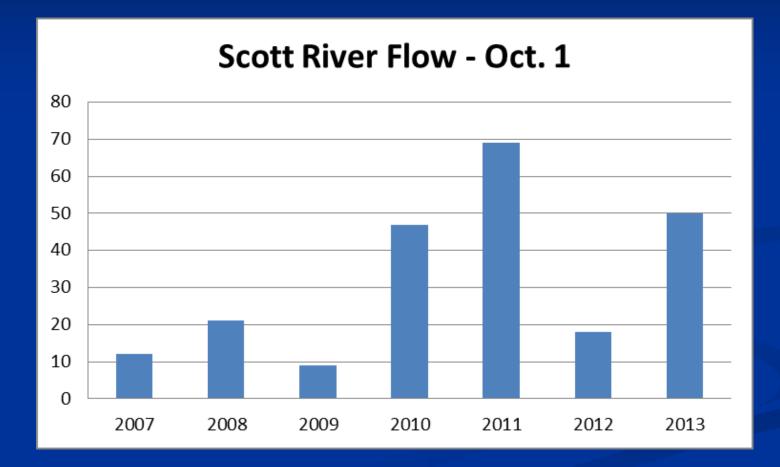
4 14 39

SUMMER LEASES: Water Trust targeted leases to benefit coho relocation sites, based on known coho habitat and water availability

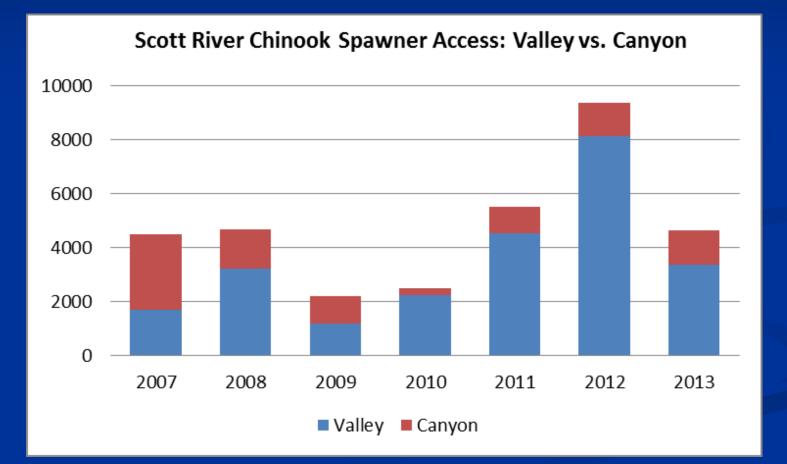
2007 same brood year as 2013 French Creek – Summer Flow Leases 2008 Coho redds 2007–08 & zone of benefit

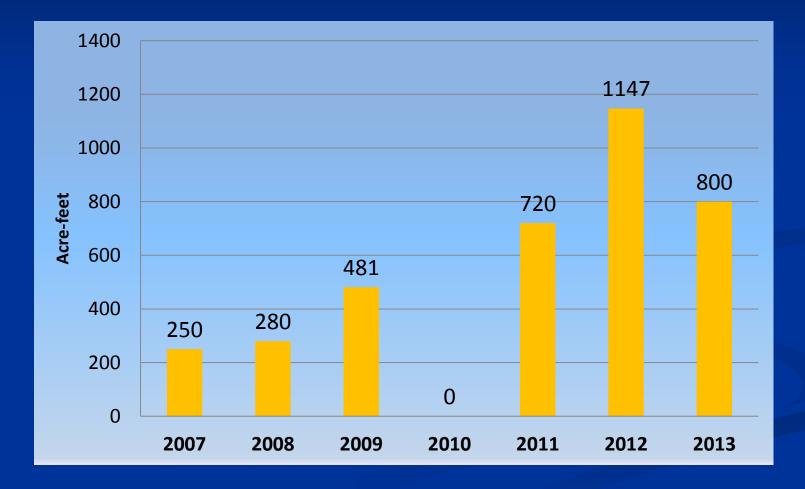
0.25 0.5 1 Miles

Cartography by E. Yokel Siskiyou RCD – May 2009


Fall Flow Needs & Sites

Adult Chinook & Coho Salmon : Migration & spawning


- Where: Scott River, Shackleford Ck, French Ck, & others
- When: Chinook Early October / Coho: November to January
- How much: Assume 25 cfs at USGS gage at RM 21 for spawners to get into Scott Valley; 50 cfs to get up to Tailings reach.


Recent Fall Flows on Oct. 1st : Barrier, or not, to spawners?

Recent Chinook spawner access to Scott Valley above canyon reach

Fall Lease Volumes, 2007-2013

Fall 2014 Connecting the Reaches

River Mile 56

RM 45

Only 800 acre-feet made connection in 2009

RM 35

2014 In Review

Expanded the SRWT water leasing program: Earlier Start Dates to help fish Incentive bonus if lease could begin by July 1 Spring lease to help juvenile migration at tailings Greater volume and habitat mileage benefit * Assisted with <u>Emergency Coho Rescue &</u> <u>Relocation Strategy</u>, in collaboration with CDFW, Siskiyou RCD, USFS, and others. ✤ Landowner cooperation was key to letting this all happen.

Current Funding Sources

Bella Vista Foundation
Dean Witter Foundation
National Fish & Wildlife Foundation

PacifiCorp
U.S. Bureau of Reclamation
U.S. Fish & Wildlife Service

www.scottwatertrust.org

Contact: Preston Harris, Exec. Director (530) 643-2395 preston@scottwatertrust.org

Scott Valley Groundwater Study

North Coast RWQCB Meeting – October 9th 2014

Gus Tolley, Jakob Neumann, Laura Foglia, and Thomas Harter

ThHarter@ucdavis.edu http://groundwater.ucdavis.edu

OUTLINE

- Introduction
- Model Overview
- Current Status of Model
- Ongoing and Future Modeling Efforts
- Water Management Challenges

SCOTT VALLEY

- Agricultural groundwater basin -Primarily alfalfa/grain hay and pasture
- Scott River drains 813 square miles, is undammed, and is tributary to the Klamath River
- Average late summer streamflow has decreased approximately 50% since the 1950's

-Likely due to combination of climate change and development of groundwater resources in the basin

-Detrimental to anadromous fish species including the threatened coho salmon

SCOTT VALLEY INTEGRATED HYDROLOGIC MODEL (SVIHM)

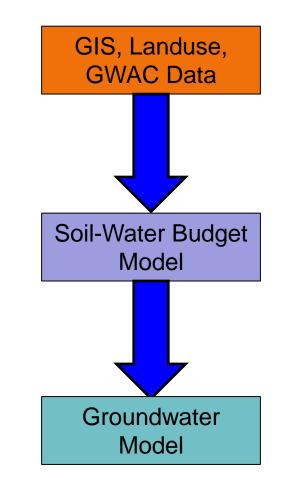
- SVIHM Version 1
 - Originally developed by Harter research group in 2010
- SVIHM Version 2 (SVIHM report 2013, WRR 2013, Meeting 12/2013)
 - Adjusted model boundaries, topography, and extension to Callahan
 - 2-layer high resolution model, 50 m (~166 ft) horizontal discretization
 - Added soil-water budget (for groundwater model input)
 - Added recharge to valley from surrounding mountains
- SVIHM Version 3 (current)

- added adjusted water budget model to reflect measured values of irrigation application rates

- Fixed ET values
- Better representation of streams and tail-water sloughs
- Included gain/loss observations for Scott River in calibration
- Updated monitoring well observations
- Mountain front recharge made seasonal

SVIHM

Two Parts


- Soil-water budget model → groundwater model

One-directional coupling of the two models

-Output from the water budget model is used as input to the groundwater model

-Depth to groundwater is deep enough in most of the Scott Valley that groundwater doesn't have a significant impact on the soil zone

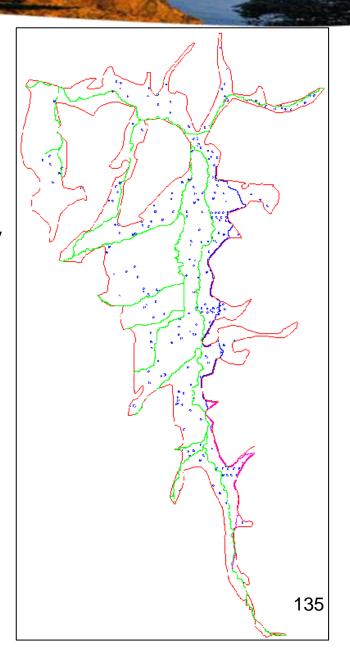
-Groundwater is affected by recharge from the soil zone.

SVIHM WATER BUDGET MODEL

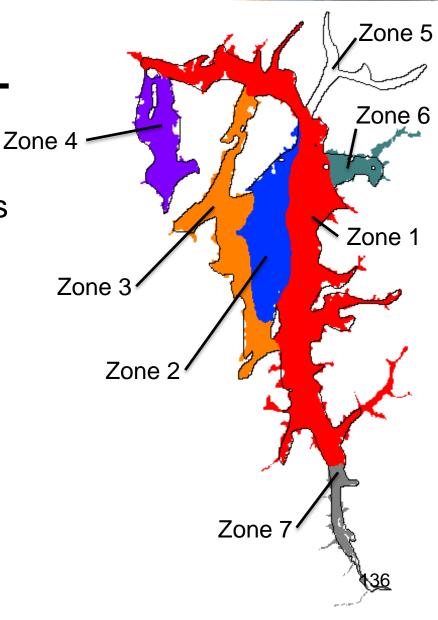
• Water Budget Model

-Uses a root zone "bucket" style approach for each agricultural field defined by the DWR land use survey

-Output is a daily timeseries of fluxes for each field during the 21 year simulation period (WY1991 – WY2011)


-Daily time-step allows us to account for quickly changing soil moisture and for carry-over of water storage in the soil zone to the next time step

 Groundwater Model -50m x 50m grid size (44 x 21 km) -880 rows -420 columns -2 layers *Layer 1 = 50 ft thick *Layer 2 = up to 200 ft thick -Daily timestep -Monthly stress periods -21 year simulation period -164 irrigation wells -50 Observation Wells


- Boundary Conditions

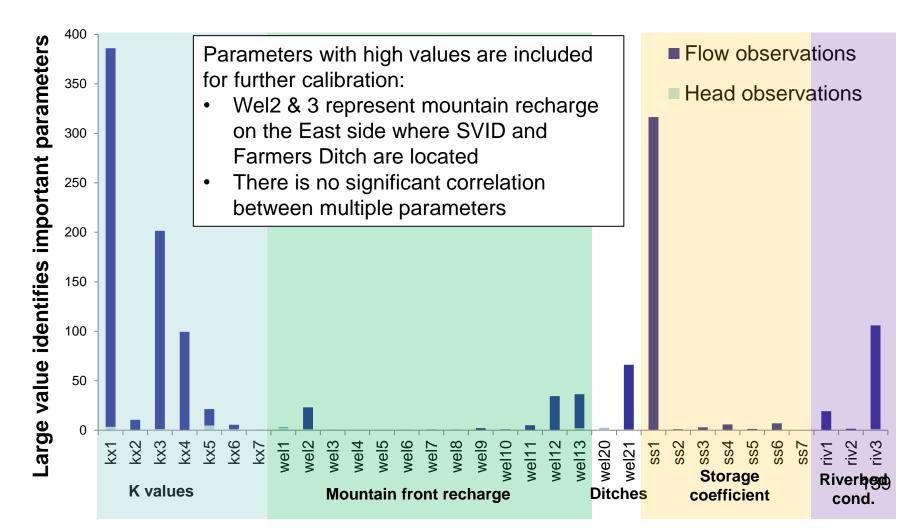
 Scott River and 10 tributaries (RIV Package)
 - -Farmers and SVID ditches (Well Package)
 - -Mountain front recharge
 - (Well Package)
 - -Inputs from water budget model (Recharge, ET, Pumping, etc.)

- Aquifer Properties
 - -7 hydraulic conductivity zones

Zone	Kx/Ky (ft/day)	Kz (ft/day)
1	152	15.2
2	118	11.8
3	167	16.7
4	66	6.6
5	41	4.1
6	92	9.2
7	3280	328

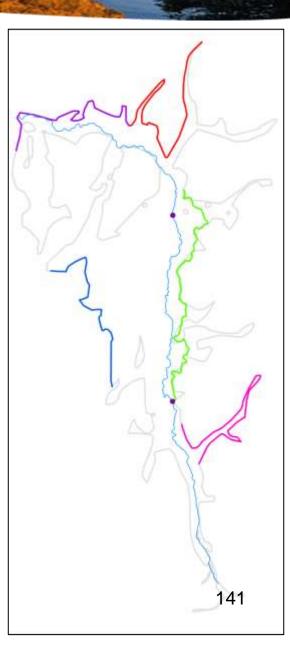
Calibrated Model Parameters

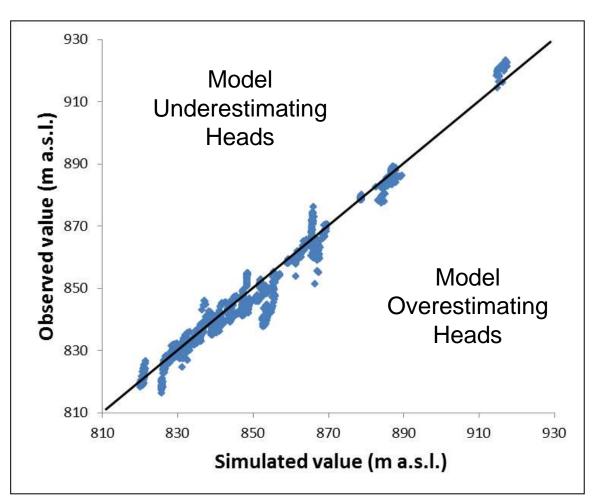
Zone	Kx/Ky (ft/day)	Kz (ft/day)	
1	152	15.2	
2	118	11.8	
3	167	16.7	
4	66	6.6	
5	41	4.1	
6	92	9.2	
7	3280	328	

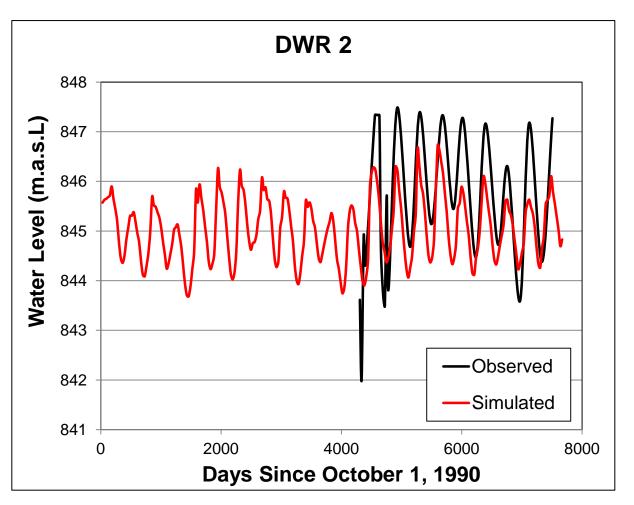

Pumping Test Estimations

Location	Kx/Ky (ft/day)
А	70-110
В	90-630
С	110-460

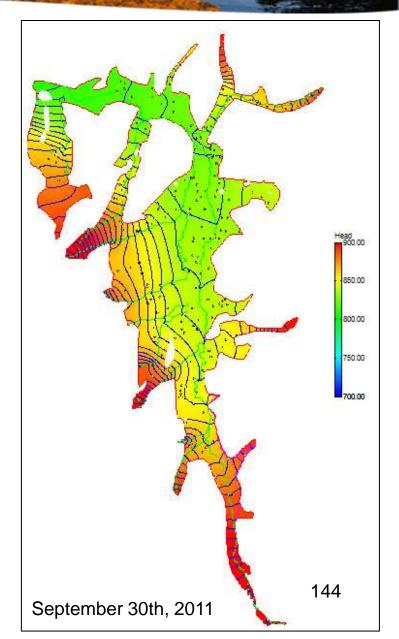
SVIHM SENSITIVITY ANALYSIS


- Determines which parameters in the model are most important to know accurately
- Sensitive parameters → relatively small changes in the value result in a big change in the model output (e.g., water levels, river fluxes, etc.)
- Insensitive parameters → large changes in the value result in little or no change in the model output

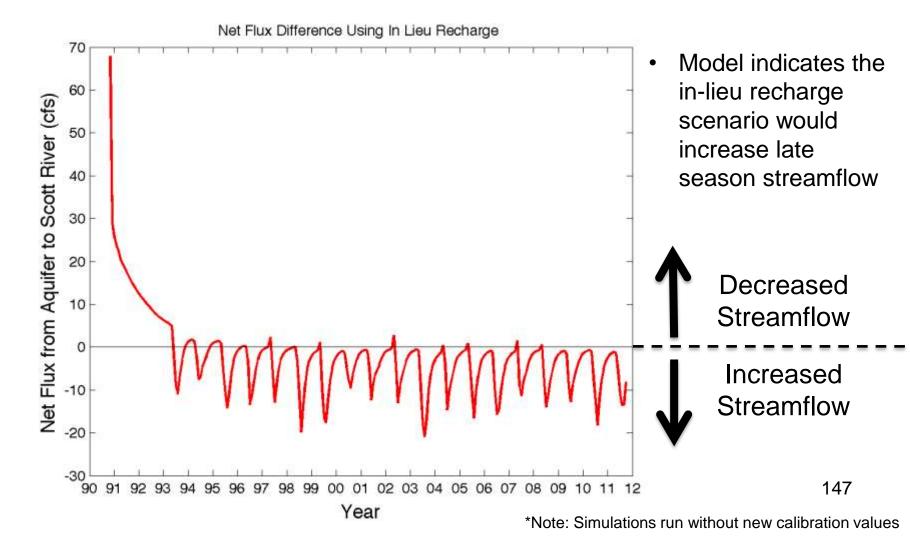

SVIHM SENSITIVITY ANALYSIS


- Systematic adjustment of model parameters to minimize the difference between simulated and observed values
- Example calibration targets
 - Well hydrographs (water levels)
 - Stream hydrographs (flow in the river)
 - Flux of water to/from the river (gain/loss observations)
- Crucial step in model development

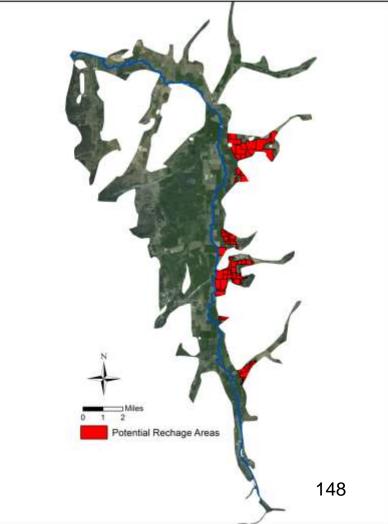
	PARAMETER	Value DEC 2013	Calibrated Value
Hydraulic	kx1	148 (ft/day)	152 (ft/day)
Conductivity	kx2	39 (ft/day)	118 (ft/day)
Zones	kx5	33 (ft/day)	41 (ft/day)
	wel3	3 (gpm)	4 (gpm)
Mountain Front	wel8	15 (gpm)	0.002 (gpm)
Recharge	wel12	3 (gpm)	0.000002 (gpm)
5	wel13	3 (gpm)	1 (gpm)
SVID Ditch	wel21	12 (gpm)	4 (gpm)
Specific Yield	ss1	0.120	0.135
	riv0	38750 (ft²/day)	
Riverbed	riv1		57 (ft ² /day)
Hydraulic Conductivites	riv2		605 (ft²/day)
Conductivites	riv3		449931 (ft²/day)


 Highest and lowest residuals are generally located near the model boundaries

SVIHM MODEL OUTPUT


- Currently set up to output results at the end of every stress period (same as last day of each month)
 - Model inputs are constant for a given month, therefore the maximum effect would be realized at the end of each month
 - Snapshot of what is happening in the model on that specific day
- Also able to calculate certain average monthly flux values

SVIHM WATER MANAGEMENT SCENARIOS


- Two different water management scenarios are currently being modeled:
- In-Lieu Recharge
 - Surface-water instead of groundwater is used to irrigate fields near the river while streamflow is sufficiently high
 - Also apply one extra irrigation before first cutting of alfafa
- Managed Aquifer Recharge
 - Use existing agricultural infrastructure to apply water during high streamflow periods (Jan-Mar) to fields
 - Increased likelihood of refilling soil-moisture profile
 - Bank water during the wet months that can be extracted during the dry months

SVIHM IN-LIEU RECHARGE SCENARIO

SVIHM MANAGED AQUIFER RECHARGE

- Potential recharge fields on the east side of Scott Valley
- 3,300 acres
 - 2,800 acres of alfalfa/grain hay
 - 500 acres of pasture
- Calculated available storage ranges from 3,300 acre-ft to 15,000 acre-ft
- 3,300 acre-ft could sustain 25 cfs of flow for over two months

SVIHM MANAGED AQUIFER RECHARGE

- Pilot project for water banking study currently being developed in the Scott Valley (15 acre alfalfa field)
- Goal of study is to determine if agricultural lands can be used for opportunistic water banking during the wet winter months
- SVIHMv3 is being used to help determine type and location of measurements that can be used to determine project success
- Model will also be used show impact to Scott River, since streamflow measurements are not likely to increase significantly for such a small study area

SVIHM FUTURE WORK

- Beaver dams
 - Artificial beaver dams are being erected on some of the tributaries
 - Groundwater recharge vs temperature effects
- Explore managed aquifer recharge scenario further
 - What are the travel times predicted by the model?
 - Does using one large field have the same effect as using several small fields?
 - How much added benefit is there from pumping water above irrigation ditches?
- Detailed sub-model that explores groundwater and surface-water interactions within the valley at a much finer scale
- Better understanding of coupling between upper watershed and Scott Valley
 - Snowpack
 - Frost
 - Fires
 - Tributary flows

SCOTT VALLEY CHALLENGES

- Water rights issues
 - Recharge projects aim to divert water during the wet winter months when demand is low and supply is high
 - Average winter streamflow in the Scott River is 1,000 cfs
 - SVID ditch can divert approximately 43 cfs
 - Recharge projects require a valid water right
 - Physically and scientifically the recharge projects are feasible, but require establishing a new right or change of an existing right
 - Not a quick, simple process
 - Fees required
 - The water right permitting process is prohibitively expensive for research projects

Scott Valley Groundwater Advisory Committee

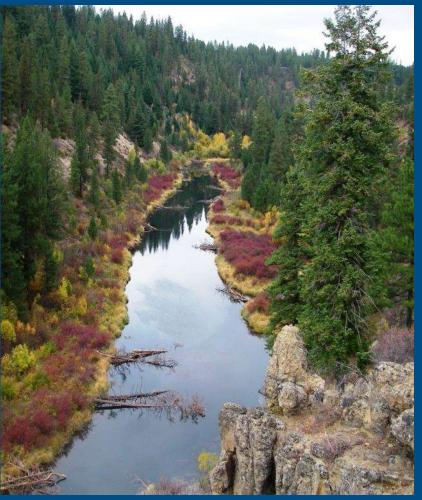
Tom Menne President

NCRWQCB Presentation

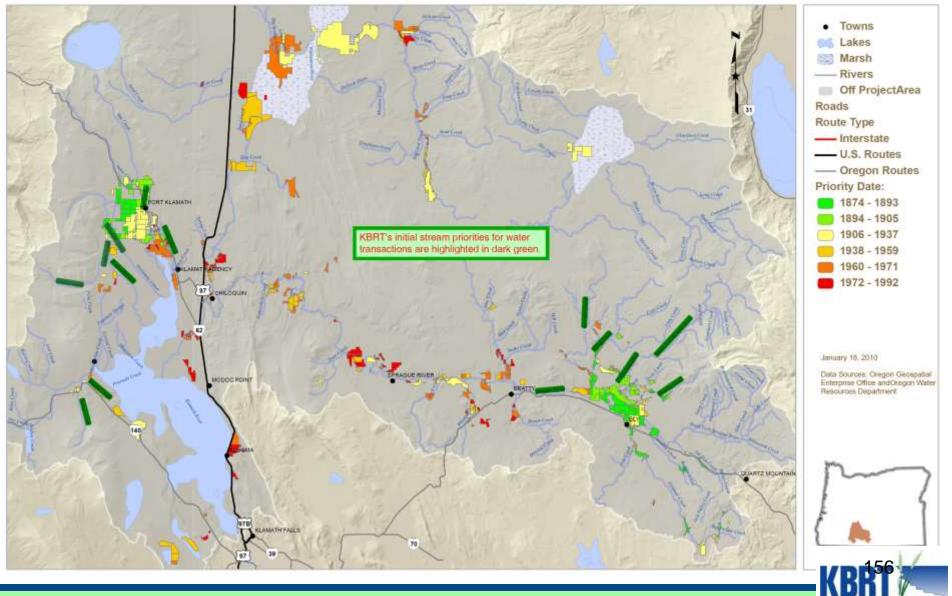
October 9, 2014 Jared Bottcher and Nell Kolden

Klamath Basin Rangeland Trust: MISSION

- To restore and conserve the quality and quantity of water flowing in the Upper Klamath Basin
- To enhance the natural ecosystem, restore ecosystem processes, and supply needed water for downstream agriculture, ranching, and native fish and wildlife populations.



Klamath Basin Rangeland Trust: ACTIVITIES


Activities/Departments

 Monitoring and Research
 Landowner Assistance
 Instream Flow Protection
 Ecological Restoration

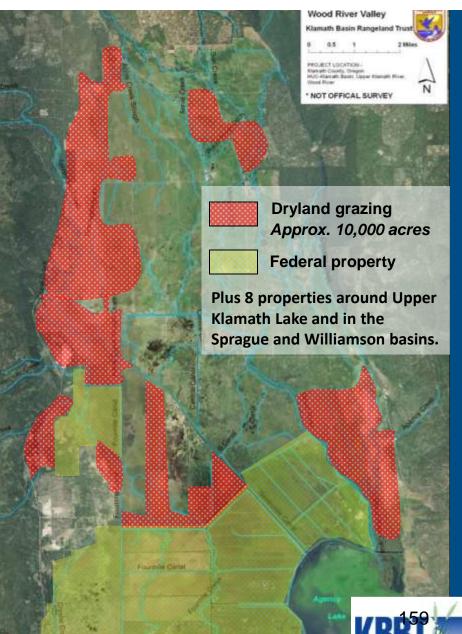
WTP Initial Stream Reach Priorities

Klamath Basin Rangeland Trust

Before Leasing

After Leasing

• Pricing


- \$1,700-2,300/ac Sprague
- \$1,500-2,800/ac Wood
- Locations/Priorities
 - Senior water right holders
 - High up in the watershed
 - Spring-fed systems
 - Endangered species considerations

RESULTS THUS FAR:

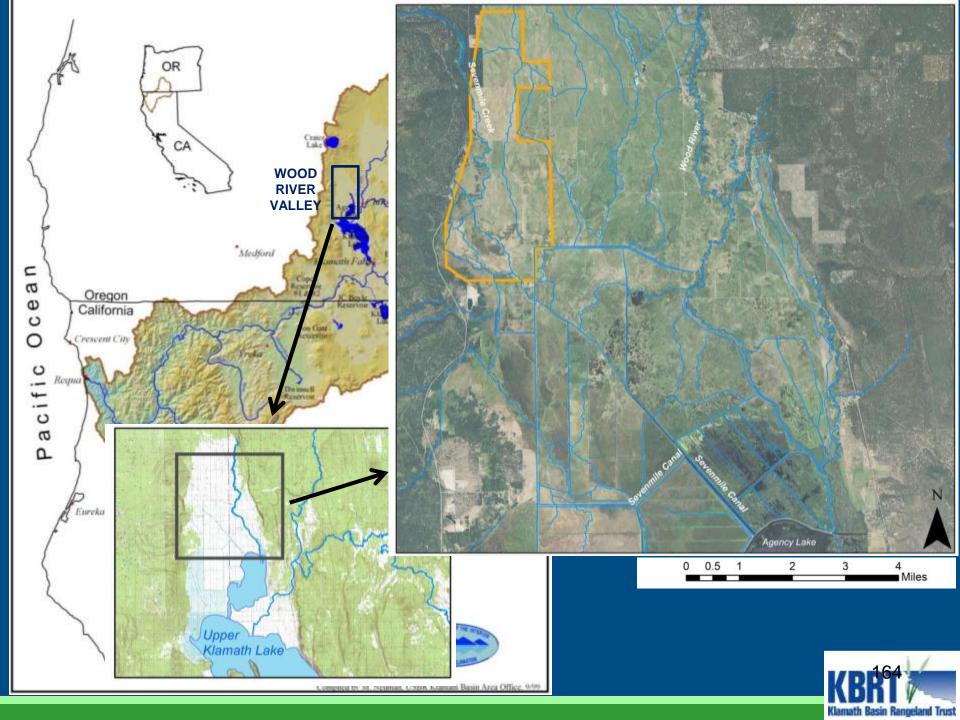
- 18 landowners on just under 12,000 acres.
- Productivity is higher than expected
- Weight gains better than expected
- Initially began with complete dryland grazing, but monitoring and research suggested that one mid-season irrigation could bring fields close to full productivity.

Diffuse Source Treatment Wetland Program

Background

- Upper Klamath Lake is a major source of nitrogen and phosphorus to downstream reaches
- Nutrients contribute to algal blooms and decline of fisheries in both the upper and lower basins
- KBRT wants to focus on the causes, not the symptoms

Restoration Tool: DSTWs


- Identified at the Klamath River Water Quality Workshop as an appropriate tool for addressing causes of impaired water quality
- Ranked high by workshop participants because of relatively low cost and high effectiveness

DSTW Design Components

- Small footprint (0.5-10 acres), so they rely on replication for effectiveness
- Increase hydraulic residence time and remove nutrients by two mechanisms: physical settling and uptake by plants
- Can range from simple impoundments to more engineered systems
- Compatible with existing grazing operations

Wood River Valley Pilot Projects

- 2 wetlands will be constructed Oct 2014
- 4-6 more will be constructed in 2015

Partners:

The Klamath Tribes, US Fish and Wildlife Service, Stillwater Sciences, NCRWQCB, California Coastal Conservancy, Oregon Watershed Enhancement Board, National Fish and Wildlife Foundation, Natural Resource Conservation Service

Pilot Projects (cont'd)

- KBRT has at least two willing landowners (combined acreage ~4,500 acres)
- Cost for siting, planning, design, permitting: ~\$11k per DSTW
- Cost for construction:
 ~\$25k per DSTW
- Cost for monitoring:
 ~\$15k per DSTW per year

Monitoring and Research

Pilot Project Monitoring

- Flow, in situ water quality parameters, and SSC and nutrients will be measured pre-construction and post-construction at inlet and outlet of each DSTW
- Flow path tracer study in each DSTW to verify hydraulic residence time
- Seasonal ET measurements and estimations for each DSTW

Monitoring and Research

Pilot Project Deliverables

- Annual reporting of monitoring results
- Design recommendations for future projects
- Water quality improvements!

Thank You!

Stillwater Sciences

Reclamation Water Quality Activities Upper Klamath Basin

Presenter: Rick Carlson KBAO Physical Scientist

RECLAMATION

Active Water Quality Monitoring Projects

- Klamath Project Quarterly Monitoring (1991 ->)
- Klamath Project Nutrient Budget Study (3/12 to 3/15)
- U. Klamath River Continuous Parameter Monitors (2001 ->)

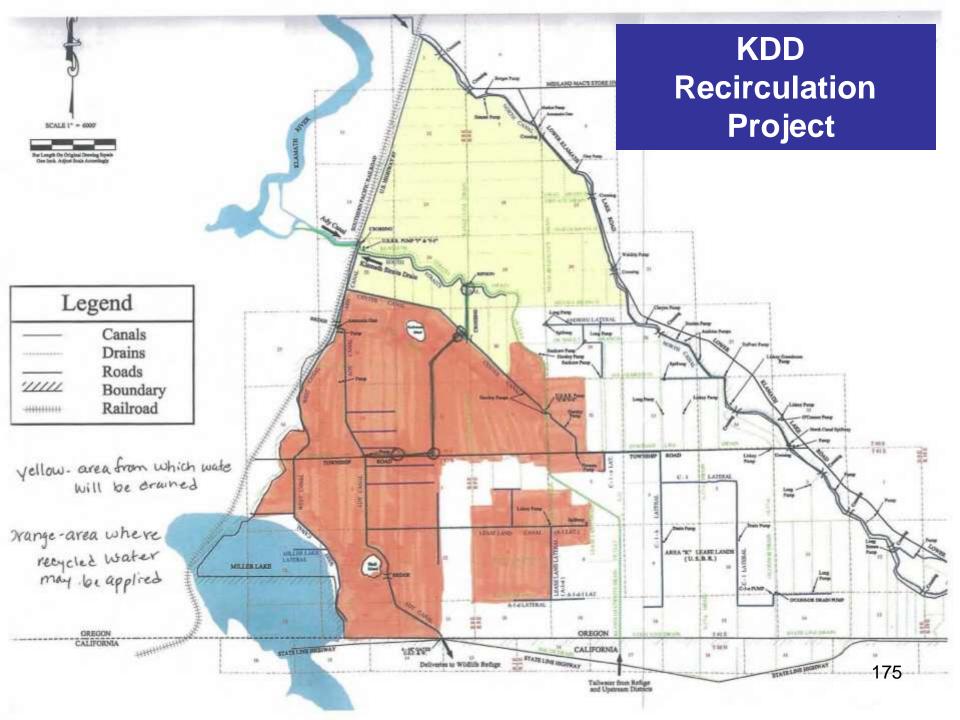
ECLAMATIC

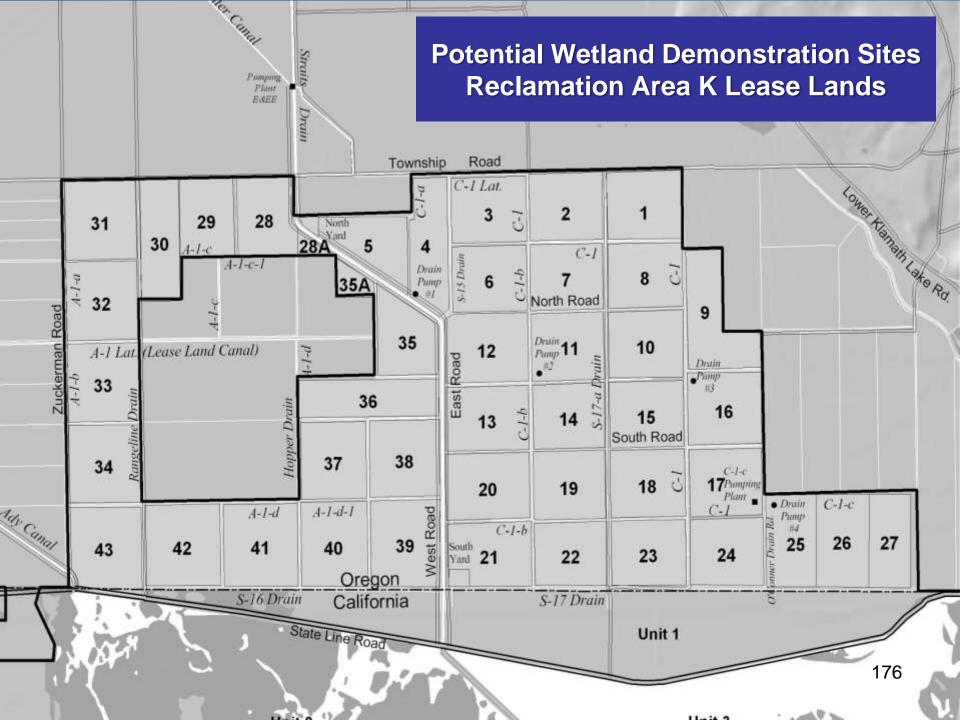
- Upper Klamath Lake and Tributary Monitoring
 - USGS (2002->)
 - Klamath Tribes (1990s ->)
- KHSA Baseline Monitoring Assistance (2009 ->)
- Seasonal Zebra Mussel Monitoring (2009 ->)

Klamath Project Nutrient Budget Study (3/12 to 3/15)

RECLAMATION

Klamath Project Nutrient Budget Study (March '12 to March '15)


- 12 Sites Located to Monitor Inflows and Outflows
- Sampled Bi-Weekly Year-Round
- Constituents Include
 - Full Nutrient Suite (TN,NH3,NO3, TP, OP)
 - Corresponding Flow Measurements
 - Field Parameters
 - BOD5, CBOD5, Pheophytin, Chlorophyll a,
 - Every 8 Weeks DOC, POC


RECLAMATION

Recent and Ongoing Studies/Work

- UKL TMDL Model Review
- UKL Monitoring Optimization
- UKL Benthic Flux
- KSD Recirculation Investigations
 - KDD Recirculation Project
- Klamath Project Water Quality Demonstration Project Identification
- Transfer of Reclamation Klamath Basin Area Office Water Quality Data to USGS National Water Information System (NWIS)
- Stewardship Framework-Water Quality Database (KBMP)

RECLAMATIO

Link to Keno Reach Hydrodynamic Model

- CE-QUAL-W2 Model (2006 to Present)
- Models Flow, Temperature, and Water Quality
- Reclamation, USGS, and Watercourse Engineering

RECLAMATIC

Currently Conducting Scenario Modeling

Link to Keno Reach Hydrodynamic Model

Report - Modeling the Water Quality Effects of Changes to the Klamath River Upstream of Keno Dam, Oregon (Sullivan et al., 2013)

- Scenarios 1 and 2. Water Quality Before and After TMDL Implementation
- Scenario 3. Compliance with Dissolved Oxygen, pH, and Ammonia Toxicity
- Scenario 4. Comparison to TMDL Model
- Scenario 5. Particulate Matter Shunting
- Scenario 6. Decrease Particulate Organic Matter and Algae in Link River

RECLAMATIC

- Scenario 7. Route Klamath River Water Through Treatment Wetland
- Scenario 8. Altered Flow Import/Export to/from the Klamath Project
- Scenario 9. Augment Dissolved Oxygen or Add Riparian Shade
- Scenario 10. Climate Change Effects on Water Quality

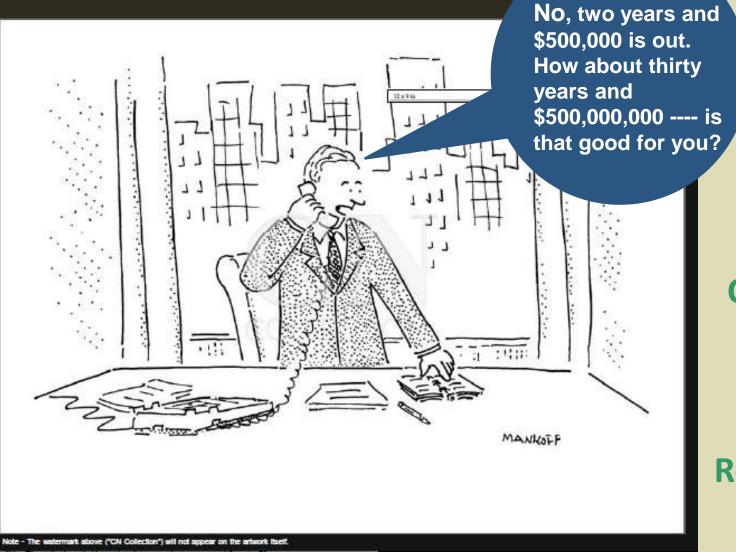
Link to Keno Reach Hydrodynamic Model

Report Soon to Be Released

- Scenario 11. Klamath Straits Drain Recirculation
- Scenario 12. Wetlands Model Extension

Present and Future Work

- Study and Model Algal Health
- Expand Model to Include One-mile Link River
- Assess Link River to Keno Dam Nitrogen Cycling.
- Improve Predictions from Lost River Basin
- Evaluate Arsenic Levels


RECLAMATION

Upper Klamath Basin TMDL Water Quality Compliance and Monitoring Plan

- Project Management Plans Reclamation Directive (1/25/14)
- Goal Implement Compliance and Monitoring Actions to Meet Designated TMDL Requirements
- Nutrient Budget Study, Modeling, TSC Demonstration Project Assessments, Benthic Flux Study, TSC KSD WQ Project Scoping
- PMG Tom Perry, Merlynn Bender, Kathy Fenton, Tammy Woods, Stewart Rounds, Mike Deas, James Kuwabara, James Carter, Rick Carlson (PM)
- Stakeholder Group
- Cost \$5,000,000 from FY 2013 to FY 2017

RECLAMATION

Legacy Conditions Create Need for Long-Term Ecosystem Rehabilitation Funding